
Rational Rose RealTime Migration to

DevOps Model RealTime
-

Pre-migration Best Practices

Authors: Steven R. Shaw, Elena Strabykina

IBM

Last updated August 10, 2018 for DevOps Model RealTime 10.2.

Page 1 of 22

INTRODUCTION..3

MEMORY CONSIDERATIONS..4

COMPONENT MERGING..4
Sample Transformation Configuration hierarchy after migration:..4
RoseRT Example Component Structure..5
Post Migration Component Structure..6

MODEL SEPARATION...7
Monolithic model...7
Separated model...8
Optional ways to separate out model parts into another model using RoseRT..................................9

CONTROLLED UNITS...9
On-demand loading of fragments..9
Comparing Notation and Semantic fragments...9

MODEL ARCHITECTURE...11

REFACTORING...11
SHARED ELEMENTS...11

Example of package specification for shared package..12
Table describing migration permutations for a controlled package...13

SHADOW PACKAGES..13
Shadow Package example..13
Model Specification dialog in RoseRT..14

SHADOW MECHANISM FOR RT CLASSES AND PROTOCOLS..15

MODELING...16

EDIT INSIDE...16
Example of “Edit Inside” in RoseRT State diagram..16

PROTOCOL SPECIFICATION..16
Protocol Specification dialog in RoseRT...17

SEQUENCE DIAGRAM..17
Focus of Control..17
Message Names...17
Ordering in the Interaction...18
Sequence diagram example in RoseRT and after migration..18
Sequence diagram example after migration that demonstrates semantic equivalence to diagram
above..19

BUILD / COMPILATION...20

MAKEFILE VARIABLES..20
Component Inclusion Paths dialog in RoseRT..20

CODE GENERATION..21

SCRIPTING THROUGH RRTEI..22

Page 2 of 22

Introduction
In large enterprises, there are many different teams working on various products
and schedules. Each team may be working with a common development technol-
ogy, but scheduling and/or dependencies may prevent migration to the newer
tooling environment. When an enterprise that uses Rational Rose RealTime
(RoseRT) wants to migrate to DevOps Model RealTime, they may realize it is not
possible to move all products at the same time. As a result, certain teams are re-
quired to continue development with RoseRT until their issues are resolved.

The purpose of this document is to provide your organization with information on
how to continue work in the RoseRT tooling while minimizing future migration ef-
fort to the Model RealTime environment.

Page 3 of 22

Memory Considerations
Model RealTime is built on a lot of Eclipse-based technology that is reapplied and
reused in other domains. The advantage of this approach is that the technology is
well-tested, adaptable to different domains and has an established Application
Programming Interface (API) for extensibility. However, often these components
are not optimized for a specific domain. Therefore, as a result, it’s possible that
these products use more memory than the equivalent infrastructure in RoseRT.
There are some things that you can do to your RoseRT model to minimize mem-
ory issues before migrating to Model RealTime.

Component Merging
RoseRT requires a separate component for each target configuration. Model Real-
Time utilizes the C/C++ Development Tooling (CDT) which allows a single CDT
project to be responsible for multiple target configurations or compile variations
(e.g. debug / release). To take advantage of this capability, the Model RealTime
model import wizard merges components in RoseRT that have the same code
generation properties into a single abstract transformation configuration (TC) with
the concrete transformation configurations inheriting from it and a single corre-
sponding CDT project. The result is less CDT projects created (in memory), and
an easier workspace to manage.

The concept of inheritance for TC files allows the property set functionality from
RoseRT to be maintained after migration. Property sets is a convenient mecha-
nism to store default properties for particular element types that are automati-
cally inherited by each model element instance unless they are overridden locally.
For models that are migrated from RoseRT, the inheritance for TC files will auto-
matically be set based on the components' use of property sets. Default TCs are
created in the project that is analogous to the Default property sets in RoseRT.
Also for components that have the same properties in a component package, an
abstract TC will be extracted that each component will inherit from.

Sample Transformation Configuration hierarchy after migration:

The property for TC inheritance behaves in a similar way to the prerequisite prop-
erty which also specifies a list of TCs. A TC can have multiple inheritance parents,
and the order in which they are specified dictates which will take priority in the
case where they have the same properties.

Page 4 of 22

There are visual cues in the editor to see which particular properties have been
overridden from the parent properties. If the property text is bolded, then that
property is local to the TC and will take precedence over the property stored in
the inherited transformation configurations.

Considering this TC file inheritance and how the component merge will work on
migration to Model RealTime, we can take a look at a concrete example.

RoseRT Example Component Structure

Above, the RoseRT model has a package with 4 components that generate the
same sources to the different target configurations they support. Since they re-
side in the same package and have the same generation properties, they are can-
didates for merging during the migration.

Page 5 of 22

Post Migration Component Structure

Generates to
CDT Project

Post migration, the components now exist as TC files that inherit from a newly
merged TC file that contains all the common generation properties. This
means that changes to the generation can be centrally managed in that ab-
stract TC (e.g. adding / removing sources etc.). All the concrete TCs will gen-
erate in a single CDT project that has multiple configurations – one for each
target (cygwin, sparcgnu281 etc.).

There are some component storage and naming requirements in RoseRT in or-
der for this component merging to occur:
 Components are merge candidates when they exist in the same contain-

ment (same package parent). Also, the owning package name must be a
legal C++ identifier (no spaces or commas).

 The name of the merged TC comes from the owning package unless they
are owned directly by the component view. In this case, the name is de-
rived from the common suffix of prefix of the components to be merged.

 Components are merged if they have the same references and code gen-
eration properties. The following properties must be identical in compo-
nents that will be merged:

CodeSyncEnabled Environment SourceSubdirectory
CommonPreface GenerateTags Threads
CompilationMakeInsert Language TopCapsule
CopyrightText References (Sources) Type
DefaultArguments SingleDataCompilationUnit UnitSubdirectory

Page 6 of 22

Model Separation
It is easy to create monolithic models in RoseRT because only one model is al-
lowed in a workspace. Consequently, everything that needs to be viewed has to
exist in the model at some level. This doesn’t map well in the Model RealTime
world because Eclipse supports multiple projects in a single workspace and each
project may contain multiple models as well.

There are many different aspects to a RoseRT model; there are the production
bits which are code generated into the executable or library as well as the sup-
porting model elements which help in the construction of the production model.
These are the use-cases, sequence diagrams, collaborations and other model ele-
ments that describe parts of the system but may not be involved in the code gen-
eration aspects of the model. These elements should be scrutinized to see if they
are necessary to carry forward with the development model. If you can delete or
separate these elements into a new model you will save memory resources during
the import process. You may consider deleting old sequence diagrams that were
originally generated from a trace execution. For model separation, test artifacts
and harnesses that test a specific component within the top model may be good
candidates for separation.

Monolithic model

In the example above, all the sub components and systems are contained in the
top-level model including the associated test artifacts and residual sequence
traces; therefore, this example represents a good candidate for model separation.

Page 7 of 22

Separated model

In the separated model, four new models are created to isolate the test artifacts
from the production code. The “TopLevelModel” shares in the components and
packages from Model1 and Model2, but doesn’t require any visibility of the associ-
ated test artifacts. This separation keeps the model foot print smaller and will
ease the model migration process because the model import wizard requires less
memory.

Page 8 of 22

Optional ways to separate out model parts into another model using RoseRT
1. Export the model and then delete everything except the parts of the model

you wish to separate. Afterwards, delete the separated parts from the
original model.

2. Ensure the parts you want to separate are inside a controlled package.
Create a new model and then share in the controlled package(s). Open the
specification for the package in the new model and change it to be
“Owned” on the “Unit” tab. Finally, open the original model and remove
the controlled package since it now exists as an owned entity in the newly
created separated model.

Controlled Units
Having the model controlled offers a number of advantages in terms of managing
a project with a team of developers. This is well documented in the
This is well documented in the RoseRT Team Development Guide.

On-demand loading of fragments
There are some additional advantages when controlled units are migrated into
Model RealTime as fragments. A fragment is a model element that exists as a root
in a separate file resource (analogous to a controlled unit in RoseRT). Model Real-
Time has a loading strategy that states if a fragment isn’t referenced by a model
or set of fragments that are currently loaded, then the fragment won’t be loaded.
Essentially, the fragments are loaded into memory “on-demand”. When working
with a large model, if you are only interested in a particular subsystem, then the
fragment loading strategy is very efficient because only the subsystem and it’s
dependencies are loaded.

Consequently, the more granular the model is controlled to, the more potential
memory is saved. A granular approach saves memory resources because depen-
dencies are broken up and won’t force the load of elements that are part of a
larger unit but don’t have dependencies to an element being loaded. To take full
advantage of on-demand loading, as a general recommendation, control down to
the capsule/class level.

There is cost associated with this since refactoring operations become more cum-
bersome because the associated resource may need to be moved or will become
out of sync with the model name and location. Also, there are more file resources
being managed by the source control system which means there is more com-
plexity or overhead with respect to updating with the repository. There is an arti-
cle on DeveloperWorks that discusses some these issues around model manage-
ment in a source control repository: Model Management with ClearCase.

Comparing Notation and Semantic fragments
There are two aspects to every model: the semantic elements which transform
into domain language code (such as C++), and the notation elements which rep-
resent a view of the semantics that allow them to be displayed in a diagram. The
transformation is only concerned with the semantic elements in the model and
the notation elements are ignored. Given the fragment on-demand load capabil-
ity, it makes sense to separate out the diagrams (which contain notation ele-
ments) into their own controlled units. That way, the controlled units won’t be
loaded unless you decide to edit or view the diagram during a work session. In
RoseRT, it is not possible to create controlled units from capsule state and struc-

Page 9 of 22

https://web.archive.org/web/20151025032034/http://www.ibm.com/developerworks/rational/library/07/0703_letkeman/index.html
https://rsarte.hcldoc.com/help/topic/com.ibm.xtools.rsarte.webdoc/Articles/Comparing%20and%20Merging/attachments/RoseRT_Team_Development.pdf

ture diagrams. However, you may choose to control any class, sequence or other
diagrams in the file system.

Page 10 of 22

Model Architecture

Refactoring
Model architecture has to consider a lot of different concerns – memory consump-
tion, dependencies and ability to change the model effectively. The ability to man-
age change means the model is separated into components that are modified by
individuals or separate teams. This also means that changes from one team or
component are often propagated into their dependencies during a refactoring op-
eration. An example of a refactoring operation is where a name of an element
changes and dependent elements that reference that element need to update
their reference accordingly.

In RoseRT, to refactor effectively you often need to have all components and de-
pendent components in the same model. As a result, it may be more effective to
work with the system or executable model to do changes in a particular compo-
nent. That way, you can be sure that changes are made to dependent compo-
nents immediately. This approach inhibits working with a “block model” except for
more trivial changes (a block model is a model of a single component that is de-
signed for unit testing). When you refactor changes made in a block model, you
run the risk of breaking the system model unless done in context to the system
model.

In contrast, if you import block models into Model RealTime and the “system
model” references these block models, it’s possible to work with the “block mod-
els” independently because Model RealTime refactors closed models located in the
workspace. Refactoring closed models is possible because Eclipse workspaces can
contain multiple projects, and the projects can have one or more models inside
them. Also, models can be closed if not currently being edited, viewed, or refer-
enced. Further, leaf dependencies or models that don’t depend on other packages
can be edited independent of the rest of the system.

In summary, there is value when you separate your system model into smaller
component (“block”) models that you can use for test or minor modification. After
migration to Model RealTime, these “block” models are imported into their project
and are considered the primary target for editing instead of relying on the “sys-
tem” model context. See Separated model.

Shared Elements
The mechanism of shared elements is a powerful concept in RoseRT because it al-
lows such elements to be reused by multiple models. This allows your team to de-
velop common system components which can be used to build layers of services
in different applications. Model RealTime supports sharing of packages or classes
only. Since shared elements can reside within multiple model contexts, there
should be a “master” model context where the shared element is edited and mod-
ified. The idea of “ownership” is managed through a property on the specification
of the shared element. If you select the “Owned by model” check box, the ele-
ment is modifiable in the owning context. If cleared, the shared element is not
modifiable.

Page 11 of 22

Example of package specification for shared package

During the Model RealTime model import process, this property is used to deter-
mine how the package will be migrated by default.

Page 12 of 22

Table describing migration permutations for a controlled package
Shared (Controlled)
Package in RoseRT

Migrated As:

“Owned by model”
property is selected.

Package is imported as an
owned fragment (directly
analogous to a controlled
unit in RoseRT).

“Owned by model” is
cleared and package
has already been im-
ported as owned from
a different model

Package is replaced by an
“element import” relation-
ship to the previously im-
ported package in the
model workspace.

“Owned by model” is
cleared and package
doesn’t exist in the
workspace.

Package is imported as a
shadow package fragment
which allows synchroniza-
tion with the original
package controlled unit in
RoseRT.

It’s possible that the “owned by model” property may not have been rigorously
adhered to and the shared package may be “owned” in multiple contexts. Or, the
development team may rely on a configuration management (CM) system to
make the real determination if a particular package is “owned” or not (in other
words, the CM system only allows write access to a particular package based on
user privileges and so on). In these cases, you have the ability to modify how a
particular controlled package is imported into Model RealTime (owned, shared,
shadow) through the Controlled Unit Conversion UI page of the “Rational Rose
RealTime Model” Import wizard. However, if you know about the “Owned by
model” checkbox and you can keep it synchronized with the real model owner in
RoseRT, you will save time and effort by modifying these options when it comes
time to migrate.

Shadow Packages
Shadow packages are a concept introduced in Model RealTime that accommo-
dates large enterprise organizations in their migration effort from RoseRT to
Model RealTime. A shadow package is a fragment in Model RealTime that is not
modifiable; it can be resynchronized and re-imported from the original package in
RoseRT to keep the content synchronized. As another way to understand this con-
cept, consider it “mastered” in RoseRT and simply replicated in the Model Real-
Time workspace.

A model or subsystem in RoseRT may have outside dependents in other subsys-
tems that share in controlled packages from it. Those dependent models may be
in a position to migrate to Model RealTime and will have their dependencies to
other models become shadow packages. If your model has outside dependents to
owned controlled packages, it is useful to understand some restrictions with mod-
ifying these packages. If these packages are modified in RoseRT, the contents
could be replicated (synchronized) into a shadow package in Model RealTime.

Shadow Package example

Page 13 of 22

RoseRT Model RealTime

In this example, the component Core1 is used by Product1 and Product2 in
RoseRT. However, Product3 has migrated to Model RealTime and also depends on
Core1. Core1 has been imported as a shadow package and replicates or synchro-
nizes with Core1 in RoseRT.

Considering this synchronization, there are some complexities and/or limitations
that cannot be avoided due to the nature of the meta-model transformation. To
avoid some of these issues, it is best to turn on quid support in RoseRT for all
models that own shared packages that will exist as shadow packages in Model
RealTime.

Page 14 of 22

Model Specification dialog in RoseRT

When you turn quid values (i.e. unique identifiers) on, the synchronization
process is able to resolve references to elements that have been renamed or
moved. Understand that synchronization will still work if unique identifiers are
turned off; however, the model import wizard will probably consider renamed ele-
ments as a new element and references to the previously named element will be
considered deleted. In this case, it is best to minimize changes in these shared
packages or try not to rename or move elements within them.

Shadow Mechanism for RT Classes and Protocols
In addition to packages, the shadow concept is partially available also for real
time classes/capsules and protocols, which are separate control units in RoseRT.
The difference from the shadow packages is that synchronization is not available
for them. However, there is a capability to import units containing classes and
protocols, which are not owned by the current model, and once the model that
owns the units has been imported, there is a capability to migrate imported
classes and protocols. This allows read-only access to shadow elements until the
owning model is imported and their conversion to short-cuts after the owning
model is imported.

Page 15 of 22

Modeling
The modeling environment in Model RealTime has tried to maintain the look and
feel of RoseRT diagramming experience (except for the differences introduced by
UML2 and the integration with the Eclipse tooling). These differences should not
interfere with the migration process, but some of the features have changed sig-
nificantly which may affect how people decide to model in RoseRT before migra-
tion.

Edit Inside
RoseRT has the capability to “Edit-Inside” a state or structure element to see
and/or edit its contents. On evaluation of this feature in the Model RealTime con-
text, the development team decided that this feature was not very practical as
the window into the sub-diagram was difficult to edit and see; further, it didn’t
scale beyond one level. Consequently, this feature was not migrated over explic-
itly. There is a way to see the contents of a state / part in Model RealTime
through the “Region Compartment” and “Structure Compartment” commands re-
spectively. These commands display larger size versions of the elements and can
be used indefinitely through the containment hierarchy and are limited only by
the space available in the diagram editor.

Example of “Edit Inside” in RoseRT State diagram

Protocol Specification
RoseRT was originally a next generation tooling for a tool called “ObjecTime De-
veloper”. In the process of that migration, some APIs changed within the Target
RunTime System (TargetRTS). To ease this migration, an option was introduced in
the Protocol specification to support the old API in backwards compatibility mode.
This backwards compatibility mode is not supported in Model RealTime so you
must ensure that you clear this option in all protocols before beginning the migra-
tion.

Page 16 of 22

Protocol Specification dialog in RoseRT

Sequence Diagram
RoseRT and Model RealTime are based on a UML (Unified Modeling Language) se-
mantic meta-model. Model RealTime is based on a newer version of the UML
specification called UML2. The UML2 specification has changed significantly to ac-
commodate more functionality. Interaction semantics is one of the areas that has
changed the most. As a result, there are some differences after migrations that
may introduce differences in the diagram appearance.

Focus of Control
In RoseRT, you can delete the focus of control (FOC) for asynchronous messages.
In Model RealTime, the behavior execution specification (analogous to an FOC in
RoseRT) is mandatory. After migration, the deleted/missing FOCs will appear with
a default minimum size. To avoid diagrams having a slightly altered appearance
after migration, you might want to keep the FOC elements in sequence diagrams
with asynchronous messages.

Message Names
Message names are not imported when the message is assigned to a signal or op-
eration.
The name of the message is set to the signal name due to the following from the
UML 2.2 specification:

[2] The signature must either refer to an Operation (in which case mes-
sageSort is either synchCall or asynchCall) or a Signal (in which case mes-
sageSort is asynchSignal). The name of the NamedElement referenced by
signature must be the same as that of the Message.

Page 17 of 22

Message names should be kept the same as the signal or operation to ensure that
they will appear the same after migration.

Ordering in the Interaction
The layout of the sequence diagrams usually signifies ordering of the messages in
the interaction. In RoseRT, the ordering is only specific to a particular lifeline. This
allows for cases where a local state and/or local action are co-located at the same
vertical location on different lifelines. In Model RealTime, the ordering in an inter-
action is global, meaning that all elements have an implied ordering relative to all
other elements even if they aren’t on the same lifeline. This is because Model Re-
alTime is built on the UML2 meta-model which has these semantics. Therefore,
the local state and local actions are adjusted by the diagram layout algorithm to
be offset from each other to reflect that. This is somewhat unavoidable, but you
can layout your diagrams with this offset in mind to accommodate the global or-
dering paradigm. There are ways to represent random ordering in UML2 through
the use of a “Parallel Combined Fragment” (see Sequence diagram example after
migration that demonstrates semantic equivalence to diagram above). It is not
possible to decide if this was the intention in the RoseRT sequence diagram since
the vertical alignment is the only indicator. You can add the “Parallel Combined
Fragment” after migration, if desired.

Sequence diagram example in RoseRT and after migration

Page 18 of 22

Sequence diagram example after migration that demonstrates semantic
equivalence to diagram above

Page 19 of 22

Build / Compilation

Makefile variables
Since build in Model RealTime is managed through the CDT (for details, see
http://www.eclipse.org/cdt/) there are some differences in how build or makefile
variables are supported. In the CDT, the makefile is generated and the assumed
variables are defined through environment variables and/or path maps. RoseRT
allows for makefile variables which are defined explicitly in the makefile frag-
ments. These work fine for the compile and link because the make system re-
solves the variables. After migration to Model RealTime, this is still true, but the
CDT can’t resolve them dynamically so warning and problem markers are created
(indexing isn’t functional). To solve this problem, on import, all makefile variables
are replaced with an Eclipse value variable. The problem with this is that it is a
workspace variable and is not easily contributed to a CM system. The variables
must be shared by exporting the variables through the Eclipse “File->Export
(preferences)”.

Component Inclusion Paths dialog in RoseRT

Above is a RoseRT model with inclusion paths that assumes makefile variables are
defined.

Instead of using makefile variables, use PathMaps or Environment variables to de-
fine variables instead. That way, there are no issues in a team environment after
migration of the model since the PathMaps exist in the model and the environ-
ment variables aren’t tooling specific.

Page 20 of 22

http://www.eclipse.org/cdt/

Code Generation
Code generation is a critical part of the RoseRT and Model RealTime tooling.
Therefore, a lot of work has gone into making sure all aspects of code generation
are semantically equal in both RoseRT and Model RealTime. The major difference
is that Model RealTime code is generated into a CDT C++ project which is then
compiled and built through the Eclipse build facility. Model RealTime supports C+
+ and C code generation, but not Java.

Since the code is generated into a CDT project, not all of the “C++ Generation”
properties may be useful or relevant anymore. Any of the properties for specify-
ing directories for code generation may not provide value after import. For in-
stance, you can specify the “OutputDirectory” property for a component to be any
directory in your file system. By default, it will output into your model directory.
In RoseRT, it might be more useful to redirect this outside of your model directory
especially if it conflicts with the CM system in place. In Model RealTime, the CDT
project where the source is generated to is a peer to the model project in the
workspace so this conflict won’t exist anymore. If you do specify and override this
property, after migration, the CDT project still appears in the workspace, but it
will have a location value to the overridden directory.

Page 21 of 22

Scripting through RRTEI
Scripting is a powerful way to query the model for custom information or extend
the model capabilities of the tool. In Rose RT, this is done through the RRTEI
which has Summit Basic syntax with a rich set of commands and API. In Eclipse
(Model RealTime), the extensibility is done in a completely different way with a
Java-based technology integrating with the plug-in facility of OSGI. Consequently,
it is not practical or feasible to provide a migration path for the RRTEI scripts. Any
scripting in Rose RT must be rewritten using the new extensibility API of Model
RealTime and all its underlying components. This should be considered in the
case of a future migration to Model RealTime for any new scripting projects since
the effort would have to duplicate in the new tooling. This is worth the effort in
the long term since these extensions are built on open source components that
are reused in many contexts. The expertise gained is re-applicable across most
Eclipse applications that build on the same open source components.

Page 22 of 22

	
	Rational Rose RealTime Migration to
	DevOps Model RealTime
	Introduction
	Memory Considerations
	Component Merging
	Sample Transformation Configuration hierarchy after migration:
	RoseRT Example Component Structure
	Post Migration Component Structure

	Model Separation
	Monolithic model
	Separated model
	Optional ways to separate out model parts into another model using RoseRT

	Controlled Units
	On-demand loading of fragments
	Comparing Notation and Semantic fragments

	Model Architecture
	Refactoring
	Shared Elements
	Example of package specification for shared package
	Table describing migration permutations for a controlled package

	Shadow Packages
	Shadow Package example
	Model Specification dialog in RoseRT

	Shadow Mechanism for RT Classes and Protocols

	Modeling
	Edit Inside
	Example of “Edit Inside” in RoseRT State diagram

	Protocol Specification
	Protocol Specification dialog in RoseRT

	Sequence Diagram
	Focus of Control
	Message Names
	Ordering in the Interaction
	Sequence diagram example in RoseRT and after migration
	Sequence diagram example after migration that demonstrates semantic equivalence to diagram above

	Build / Compilation
	Makefile variables
	Component Inclusion Paths dialog in RoseRT

	Code Generation
	Scripting through RRTEI

