
DevOps Model RealTime

Model Fixup Plugin

Author: Mattias Mohlin
Senior Software Architect

IBM

INTRODUCTION...2

INSTALLATION...3

VERSIONS..3

USING THE MODEL FIXUP PLUGIN...5

RECOMMENDATIONS ON THE ORDER OF RUNNING FIXUPS...6

MODEL FIXUPS...7

ALIEN SYMBOLS REMOVAL..7
DUPLICATE IDS REMOVAL FOR TEMPLATE PARAMETERS..7
UNNECESSARY REGIONS REMOVAL..9
UNNECESSARY ENTRY/EXIT POINTS REMOVAL...9
UNNECESSARY JUNCTION POINTS REMOVAL..10
OBSOLETE URI PROPERTY REMOVAL..11
UNBOUND TYPE REFERENCES RESOLUTION...11
DELETE NAME FOR STATE CHART DIAGRAMS CALLED 'STATE DIAGRAM'..12
DEPENDENCY FIXUP...13
INCOMPLETE CONNECTION VIEWS REMOVAL..13
INTERNALTRANSITIONS INVALID VIEW REMOVAL...14
FILE FORMAT FIXUP...15
INCORRECT TYPE REFERENCES FIXUP...15
OBSOLETE PACKAGE IMPORT REMOVAL..16
OBSOLETE PROFILE APPLICATION REMOVAL..16
DANGLING FRAGMENT DETECTOR...16
CONNECTOR ENDS UPDATER..17
SETTING ELEMENTS FOR MULTIPLICITY LABELS ON STRUCTURE DIAGRAMS...18
ADD MISSING PACKAGE IMPORTS..19
USE CDATA IN MODEL FILES..20

1

This document describes the Model Fixup plugin which is a utility for detecting and fixing
problems in a DevOps Model RealTime model which are hard to detect and fix manually.

The document was last updated for Model RealTime 11. All screen shots were captured on the
Windows platform.

2

Introduction
Most problems in an Model RealTime model can be detected and fixed by using standard
Model RealTime features such as model validation and by editing the model in various views
and diagrams. However, certain problems may be more hidden and may therefore be difficult
to detect and fix. Over time several categories of such problems have been identified by IBM
and the Model RealTime user community. The Model Fixup plugin provides utilities that al-
low you to check if your model contains any problems of those known categories. If such
problems are found the plugin offers a possibility to correct them.

There are a number of different reasons why a model may need to be corrected using a model
fixup:

• The RoseRT importer had (and may still have) limitations and bugs at the time when a
model was migrated to Model RealTime. Hence, the resulting Model RealTime model
may not always be optimal in all aspects.

• There may have been bugs in older versions of Model RealTime which were used to edit
the model in the past. Those bugs may have caused certain parts of the model to be faulty,
or in need of improvement.

• New features in later versions of Model RealTime may have caused certain legacy model
constructs to become more or less obsolete.

• Users may, for various reasons, have made modeling mistakes that are hard to detect and
fix without some kind of tool support. In particular merging model is something that can
introduce errors if not used correctly.

The Model Fixup functionality is packaged as a separate plugin rather than being an inte-
grated part of the standard Model RealTime installation. There are two main reasons for this:

• New categories of problems may be found at any time, and by being independent of a
certain Model RealTime release, IBM can provide updated versions of the Model Fixup
plugin more rapidly.

• It is expected that only a few users within an organization will run the Model Fixup
plugin, and most of them will only run it once. Therefore it is not desirable to expose the
commands for running model fixups in the general Model RealTime user interface, since
it may confuse the majority of users who don't need to run it.

The rest of this document describes how to install the Model Fixup plugin and how to use it
for detecting and fixing model problems. Each provided model fixup will then be described in
detail.

3

Installation
Older versions of the Model Fixup utility consists of a single file called com.ibm.xtool-
s.umldt.fixup_<version>.<date and time>.jar. Install it by placing this file in the
dropins folder of the Model RealTime installation. Then start Model RealTime once with the
-clean option set in eclipse.ini to make sure that Model RealTime recognizes and loads
the new plugin.

Starting from version 10.1.0.201804200812 (the April 2018 version) the Model Fixup is in-
stead delivered as a P2 update site. This means that you can install it on top of Model Real-
Time using the same method as when installing Model RealTime itself on top of Eclipse.

1. Perform Help - Install New Software
2. Press the Add button and give a unique name to the P2 repository (e.g.

ModelFixup_<today's date>). Then press the Archive button and browse to the lo-
cation of the P2 update size ZIP file. Press the OK button.

3. Mark all checkboxes and press Next.

4. Press Finish to start the installation. Once it is completed you will be prompted to
restart Model RealTime. Do so.

Note: To install in Model RealTime 11.1 it's important to use Java 11. See the Model Real-
Time 11.1 installation instructions for more information.

If the Model Fixup utility was successfully installed you should see a new menu “Model
Fixup” in the global toolbar:

Versions
The table below summarizes which version of the Model Fixup plugin that should be used
with which version of Model RealTime / Model RealTime:
Model Fixup Version Install Artifact Model RealTime / Model

RealTime version

1.0 Plugin Model RealTime 8.5.1 (with
CP1 or later installed)

2.0 Plugin Same as 1.0 and also supports
Model RealTime 9.0.0.1

4

3.0 Plugin Model RealTime 9.0.0.1

4.0 and 5.0 Plugin Model RealTime 9.1.2

5.2 Plugin Model RealTime 10.0

10.1 P2 update site Model RealTime 10.1

10.2 P2 update site Model RealTime 10.2

10.3 P2 update site Model RealTime / Model
RealTime 10.3

11.0 P2 update site Model RealTime / Model
RealTime 11.0 or later

5

Using the Model Fixup Plugin
Model fixups are run using a Model Fixup wizard. There are two ways to launch this wizard:

• From the global Model Fixup menu.
In this case the fixup will be run on all model files in the workspace.

• From the Project Explorer context menu of one or many selected elements.
In this case the fixup will be run only on the model files to which the selected elements
belong.

Note that some fixups do not operate on model files, but on other files that are used together
with the model, such as transformation configuration files. If you want to run such a fixup you
should therefore invoke the Model Fixup wizard either from the global Model Fixup menu,
or from the context menu on a Project Explorer selection from where the relevant files can be
obtained (for example a project).

It is recommended to first try a model fixup on a small part of your model and study its im-
pact before taking the decision to run it on all your models.

The first page of the Model Fixup wizard presents a list of available fixups and lets you
choose which one to run. Each fixup in the list is capable of detecting and fixing one particu-
lar category of problems. A brief description of the selected fixup is shown in the text area to
the right. The fixups are described in more detail later on in this document.

Each fixup can be run in two different modes:
1. Analyze model and report found problems

In this mode the selected fixup will only analyze the model and report problems that are
found. The models will not be modified. This is the default mode.

2. Update model and report fixed problems
In this mode the selected fixup will both find problems and fix them.

It is always recommended to first run a fixup in analysis mode to see if your model contains
any problems which the selected fixup can detect and fix. Note that a few of the fixups do not
support the analysis mode and can only update the model directly.

Information about found and fixed problems are printed to a special Model Fixup console:

6

Problems are also reported in the Problems view, and from there you can navigate to the place
in the model where the problems were found by double-clicking on them. You may mark the
checkbox Clean all problem markers before running model fixup in order to ensure that
the Problems view get cleared before the fixup starts to run.

When you are ready to run a model fixup in “Update” mode you should keep the following in
mind:

• Make sure you treat the running of a model fixup as a refactoring operation. This means
that you should check-in all changes made by a model fixup as a whole, and not mix them
with other unrelated changes. Also you should check-in the changes made by one model
fixup before running another model fixup. Remember that changes made by a model
fixup are not undoable, so it is important to be able to revert back to a good state in case
you decide to rollback a model fixup.

• Model fixups may yield a huge number of changes in a model, which can lead to many
changes and conflicts in Compare/Merge. Make sure you don't get any conflicts when
checking in your models after a model fixup has been run.

• Usually you can choose to run fixups in any order, but some fixups are recommended to
be run before others. If you decide to run multiple fixups you should run them in the
same order as they are listed in the Model Fixup wizard (see also Recommendations on
the Order of Running Fixups).

• Some model fixups may have side-effects such as closing all open files in the workspace,
to be able to carry out model changes in a safe way.

There is a checkbox Save model files after running model fixup that can be set for those
fixups which do not already save changed files automatically. Note that if you don't set this
option, you must manually save changed model files after running the fixup. It may be neces-
sary to make a selection in the Project Explorer to enable the Save and Save All buttons in the
toolbar.

Recommendations on the Order of Running Fixups
Even if each model fixup can be run independently, it is recommended to run the following
fixups in the described order to avoid reprocessing of certain model elements that have been
already cleaned-up:
• Unnecessary regions removal
• Unnecessary entry/exit points removal
• Unnecessary junction points removal
In general the recommendation is to run fixups in the order in which they are listed in the
Model Fixup wizard, even if the order of execution only is significant for a few of the avail-
able fixups.

7

Model Fixups
All model fixups that are provided by the Model Fixup plugin are described below.

Alien symbols removal
An alien symbol is a symbol which is not connected to a semantic element in the model, but
where such a semantic element has to exist for the model to be well-formed. A model that
contains alien symbols is corrupted, and should be corrected by removing those symbols.
Alien symbols may lead to many different symptoms. For example, you may get errors when
opening a diagram. A specific symptom for alien state symbols could be a composite state
symbol that has nested state symbols that cannot be selected. It may for example look like
this:

The reason for this corruption is not fully known, but it may originate from merging models
using older versions of Model RealTime.

In analysis mode this fixup will report a problem for each alien symbol that is found. In up-
date mode the fixup will correct the model by deleting each found alien symbol.

Duplicate IDs removal for template parameters
Starting with Model RealTime 10.3, all build operations are handled by the model compiler.
The model compiler runs in its own process, outside of Model RealTime, and a consequence
of this is that the way it loads models is slightly different compared to when loading the mod-
els inside the Model RealTime IDE. For example, when models are loaded in the model com-
piler all presentation elements (diagrams, symbols, lines etc) are skipped since these elements
do not affect how code is generated. The model compiler is also more strict, and some minor

8

errors in the model which the Model RealTime IDE doesn't care about, may lead to errors or
faulty generated code when loaded by the model compiler. One example is related to tem-
plates. If your model contains a "RedefinableTemplateSignature" with a parameter list that
contains duplicate IDs, then the model compiler will treat this as an error that causes the cor-
responding root element not to be loaded. This, in turn, typically leads to incorrectly gener-
ated code. However, the Model RealTime IDE can load such a model without any errors:

Here is an example of the model representation where the duplicate IDs can be seen (the text
marked in boldface):

<packagedElement xmi:type="uml:Class" xmi:id="_gRW4wF9pEem0Ebcj45TfPQ" name="MyHybridObject"
clientDependency="_iXEoFV9pEem0Ebcj45TfPQ _iXFPIF9pEem0Ebcj45TfPQ _iXF2MF9pEem0Ebcj45TfPQ
_gRW41l9pEem0Ebcj45TfPQ _iXEBAl9pEem0Ebcj45TfPQ _iXEoEF9pEem0Ebcj45TfPQ _iXF2MV9pEem0Ebcj45TfPQ">
 <eAnnotations xmi:id="_gRW4wV9pEem0Ebcj45TfPQ" source="http://www.eclipse.org/uml2/2.0.0/UML">
 <details xmi:id="_gRW4wl9pEem0Ebcj45TfPQ" key="template"/>
 </eAnnotations>
 <ownedTemplateSignature xmi:type="uml:RedefinableTemplateSignature"
xmi:id="_gRW4xF9pEem0Ebcj45TfPQ" parameter="_gRW4xV9pEem0Ebcj45TfPQ _gRW4xV9pEem0Ebcj45TfPQ
_gRW4xV9pEem0Ebcj45TfPQ _gRW4xV9pEem0Ebcj45TfPQ">
 <ownedParameter xmi:type="uml:ClassifierTemplateParameter" xmi:id="_gRW4xV9pEem0Ebcj45TfPQ"
parameteredElement="_gRW4xl9pEem0Ebcj45TfPQ">
 <ownedParameteredElement xmi:type="uml:Class" xmi:id="_gRW4xl9pEem0Ebcj45TfPQ" name="T"
templateParameter="_gRW4xV9pEem0Ebcj45TfPQ"/>
 </ownedParameter>
 </ownedTemplateSignature>
 <interfaceRealization xmi:id="_gRW41l9pEem0Ebcj45TfPQ" client="_gRW4wF9pEem0Ebcj45TfPQ">
 <supplier xmi:type="uml:Interface"
href="platform:/resource/SELAdaption/SelAdapterFramework.efx#_kKc4sM-eEeeh2OcXHI3AQQ"/>
 <contract href="platform:/resource/SELAdaption/SelAdapterFramework.efx#_kKc4sM-
eEeeh2OcXHI3AQQ"/>
 </interfaceRealization>
 </packagedElement>

9

The cause of this corruption is currently unknown. It might be related to merge operations.

Unnecessary regions removal
Older versions of Model RealTime had a bug in the condition for when to show the "compos-
ite" decorator on a state (). Another bug was that when you double-clicked on a non-com-
posite state, but then answered No in the dialog that asks if a sub statemachine should be cre-
ated, then the state still became composite (although not shown to be composite). And this
modification to the model was not undoable. A consequence of these bugs is that many mod-
els contain composite states that were never intended to be composite. If such composite
states are double-clicked you will just find an empty state chart diagram.

This fixup detects composite states that contain empty regions, or regions that only contain an
initial pseudo-state that is not redefined in inherited state machines. By removing such unnec-
essary regions the composite state decorator can be trusted so that only states that are true
composite states show this decorator. Another benefit with this clean-up is that the model be-
comes smaller without those unnecessary regions.

Here is an example of a composite state where the region is empty:

It is possible to remove the region for an individual state by means of a Quick Fix that is
available for the problems that are reported by the fixup. It can also be done by means of the
command Make Non-Composite that is available in the context menu of the state. To remove
all empty regions run the fixup in “Update” mode.

When you run this fixup make sure that your workspace contains all relevant projects which
may contain inherited state machines with redefined initial transitions. Otherwise there is a
risk that this fixup will think a region is unnecessary even if it is not, and hence remove it.

Unnecessary entry/exit points removal
In older versions of Model RealTime entry/exit points were always created on a state when
connecting a transition to it. However, entry/exit points are only useful to have on a composite
state. The Rose RT importer also has this behavior which means that if your model was mi-
grated from Rose RT it is likely to contain lots of unnecessary entry/exit points.

This fixup will detect and remove entry/exit points that are attached to non-composite states,
and that hence are unnecessary. The benefit with this clean-up is less clutter in state machine
diagrams, smaller model files and diagrams that open faster. Editing of transitions that con-
nect directly to a state is also easier compared to if they connect to entry/exit points. In partic-
ular it is possible to easily move self-transitions on the state border using arrow keys if they
do not connect to entry/exit points.

Here is an example of unnecessary entry/exit points that have been detected by this fixup:

10

It is possible to remove individual entry/exit points by means of a Quick Fix that is available
for the problems that are reported by the fixup. To remove all unnecessary entry/exit points
run the fixup in “Update” mode.

Unnecessary junction points removal
The model representation for choice points is different in Model RealTime compared to Rose
RT. In Rose RT the choice point condition is associated with the choice point itself, while in
Model RealTime the condition is a guard on each transition that go out from the choice point.
This difference means that certain Rose RT models where inherited state machines redefine
such transitions cannot be directly mapped to Model RealTime models. Because of that, the
Rose RT importer migrates a Rose RT choice point using an extra junction point in Model Re-
alTime. The transition between the choice point and the junction point contains the guard con-
dition while the transition that leaves the junction point contains the effect code (if any). This
mapping is necessary in order to support inherited state machines where the transition with
the effect code is redefined. However, if there are no redefinitions for the outgoing transitions
such junction points are superfluous and their incoming and outgoing transitions could be
merged without affecting the behavior of the model.

This fixup detects junction points that are unnecessary and could be removed. Here is an ex-
ample of a junction point in a model migrated from Rose RT which is unnecessary and that
could be removed without affecting the behavior of the model:

It is possible to remove individual junction points by means of a Quick Fix that is available
for the problems that are reported by the fixup. To remove all unnecessary junction points run
the fixup in “Update” mode.

When you run this fixup make sure that your workspace contains all relevant projects which
may contain redefined junction point transitions.

11

Obsolete URI property removal
This fixup operates on transformation configuration files in XML format. It should not be
used if your transformation configurations uses the new JavaScript format (.tcjs).

A transformation configuration has a property called “URI” which holds the URI from which
the transformation configuration was loaded. This property is only needed in the in-memory
representation of a transformation configuration and should not be present in a .tc file. How-
ever, due to a bug in an old version of Model RealTime it is possible that the URI property
has been incorrectly persisted so that it appears in a .tc file. If such a .tc file has been copied in
order to create another transformation configuration the “URI” property will therefore contain
the URI of the original transformation configuration which is incorrect. This could lead to that
some operations that deal with transformation configurations fail, for example navigation
from model elements to generated code.

In analysis mode this fixup scans transformation configuration files for the “URI” property. A
typical report may look like this:

Running fixup { Obsolete URI property removal } in analysis mode.
Detected obsolete URI property in transformation configuration \
DoxygenTest\HelloWorld.tc.
Detected obsolete URI property in transformation configuration \
DoxygenTest\ExtLib.tc.
Detected obsolete URI property in transformation configuration \
OrganizeSources\HelloWorld.tc.
Detected obsolete URI property in transformation configuration \Sample\
Release.tc.
Detected obsolete URI property in transformation configuration \Sample\
Debug.tc.
5 obsolete properties found.

In update mode the fixup will correct the faulty transformation configurations by simply re-
moving the “URI” property.

Note that contrary to most other fixups this fixup operates on transformation configuration
files rather than model files. Hence, if you want to run this fixup you should invoke the Model
Fixup wizard on something that contains .tc files (the whole workspace, a project, an individ-
ual .tc file etc.).

Unbound type references resolution
Models imported from Rose RT often have typed elements (attributes, parameters etc) where
the type reference is unbound, and the type is only specified by means of the “Native Type”
property. Such models can be correctly transformed to source code, since the “Native Type”
property stores the name of the target type. However, many features in Model RealTime will
not work correctly for such an element due to the unbound type reference. One symptom of
this problem shows up in the Properties view where the Open Type button will show that the
type reference is unbound.

12

Examples of other features which won't work when the type reference is unbound include An-
alyze model and add missing dependencies and Detect source dependencies automati-
cally.

Before you run this fixup ensure that your workspace contains all relevant projects so that the
correct target types can be located. You want the fixup to find and fix type references that are
truly unbound, and not just those that are unbound because the project that contains the target
type is currently not present in the workspace.

When the fixup is run in analysis mode a typical report may look like this:

Running fixup { Unbound type references resolution } in analysis mode.
Detected unbound type reference in element TrafficLights::TrafficLights::arr.
1 unbound type reference(s) found.

In update mode the fixup will attempt to resolve unbound type references by searching the
workspace for a type that matches what is specified in the “Native Type” property.

Delete name for state chart diagrams called 'State Diagram'
The name of a newly created state chart diagram is by default empty, and then the qualified
name of the state machine is used to describe the diagram. Unfortunately the Rose RT im-
porter used to give the fixed name “State Diagram” to all imported state chart diagrams.
Thereby they become impossible to distinguish when working in Model RealTime. For ex-
ample, if you open two different state chart diagrams, the title of both editors is “State Dia-
gram”.

Here is an example:

This fixup resets the name of such diagrams.

Applying fixup { Delete name for state chart diagrams called 'State Diagram' }.
Detected state machine diagram with the name 'State Diagram' in element
TrafficLights::TrafficLights::State Machine.
Clearing name of the diagram TrafficLights::TrafficLights::State Machine::State
Diagram.
1 diagram name(s) has been cleared.

When the diagram name is empty, the qualified name of the state machine is shown in the edi-
tor title, which makes it easier to work with many open diagrams at the same time:

13

Dependency fixup
This fixup performs several consistency checks for dependencies. For example, it has been
observed in legacy models that some dependencies have more than one client or supplier. This
is usually not noticeable when working with the model in Model RealTime, but can be seen if
looking in the model files. The cause of this duplication is unknown, but may likely be related
to model merge.

Another problem which this fixup can detect and fix is when a dependency references a client
element, but where that client element does not contain the corresponding reference to the de-
pendency. Such a dependency is broken and can cause various problems, such as incorrectly
generated C++ code by the model compiler. The problem is difficult to detect and fix using
the regular Model RealTime user interface since such dependencies do not show up in the De-
pendencies tab in the Properties view.

This problem has been observed when the client element is stored in its own fragment file,
and it's likely that it was caused by an incorrectly performed file-by-file merge which caused
the dependency reference to be lost. The fixup will report and remove all broken dependen-
cies it finds.

Other problems that this fixup can detect include dependencies with unresolved client or sup-
plier references, duplicated dependencies between the same elements (this could affect code
generation negatively) and dependencies with no clients or suppliers at all. Some of the prob-
lems found by this fixup cannot be automatically corrected. In those cases you instead have to
navigate from the Problems view to the location in the .emx or .efx file where the problem
was found. You then need to decide if the problem can be fixed there, or if it’s easier to re-
move the entire dependency and recreate it instead.

Note that depending on what problems that are found and fixed, you may need to run this
fixup multiple times before all dependency problems have been detected and fixed. When the
fixup no longer finds any problems you know that you are done.

Also note that the File format fixup is explicitly applied on modified model files that are up-
dated by this fixup.

By running this fixup your model files can become smaller, and you prevent future problems
which corrupted dependencies possibly could cause.

Incomplete connection views removal
The symptom of this problem is a model validation error:

14

“Relationships must connect to correct semantic elements”

However, when trying to navigate to the source of this problem you would arrive at a diagram
view (i.e. a line) which is incomplete, and that is hard to make complete and correct again.
The background for this problem is a bug in the Rose RT importer which led to incomplete
views for inherited transitions and connectors.

When running this fixup the diagram views become corrected, so that the model validation er-
ror no longer is reported, and that navigation to the diagram views work correctly again. Also,
the size of the model becomes a little smaller.

InternalTransitions invalid view removal
The version Model RealTime 9.1.2 CP1 2015.46 introduced an experimental feature to
display internal transitions in a separate compartment outside the State Machine diagram. But
unfortunately there was a bug in this feature that led to the creation of new view elements
when opening an enclosed State Machine diagram. This happened even when the
experimental feature was disabled. As a concequence, you might observe 'Invalid view -
remove from diagram' elements when the diagram is opened in later versions of the tool
where the internal transitions compartment support was redesigned.
This is a fragment of a model file with the element causing the 'Invalid view' message:

<contents xmi:type="umlnotation:UMLDiagram"
 xmi:id="_QHleQA0cEeaN8P3y4nEU0Q" type="Statechart" ...>
 ...
 <children xmi:type="umlnotation:UMLFrame"
 xmi:id="_QHleRg0cEeaN8P3y4nEU0Q" type="InternalTransitions" ...>
 ...
 </children>

This is how the problem looks like on a State Machine diagram:

15

This fixup finds and removes all view elements created by that outdated implementation.

File format fixup
It has been observed that when using the Alien symbols removal fixup in version 3.0 and
older of the Model Fixup plugin, the file format of model files is changed in a way that differs
from what Model RealTime is used to work with. It has the effect that a textual diff of model
files leads to irrelevant changes, and Model RealTime would undo changes the next time the
file is saved. The following file format changes have been discovered:

– every self-closing tag is replaced with an explicit end tag: For exampe,
<specification xmi:type="uml:LiteralInteger" xmi:id="_1mrEcNWKEeGu9thmUm_ypQ" value="10"/>
is changed to
<specification xmi:type="uml:LiteralInteger" xmi:id="_1mrEcNWKEeGu9thmUm_ypQ" value="10"></
specification>

– " and > is replaced with ” and > respectively
– whitespaces and the order of XML headers may be different
– the tool version stored in the beginning of the file may be changed to the current

version, for example:
<!--IBM Rational Software Architect RealTime Edition 10.2.0--> changed to
<!--IBM Rational Software Architect RealTime Edition 10.3.0-->.

There could also be other situations which may lead to file format changes, such as if manu-
ally editing or merging model files.

The implementation of the Alien symbols removal fixup has now been improved to avoid
these unwanted side-effects. If you used the earlier version of this fixup it's now recommen-
ded to run the ”File format fixup” to normalize the model file format. Note, since “File format
fixup” will re-save all files, it may lead to a large amount of changes that can’t be tracked us-
ing model compare but with text compare.

Incorrect type references fixup
Starting with Model RealTime 10.0 some components became optional to install (e.g. Tar-
getRTS, Connexis, EGit integration, Sketcher and CORBA support). Some other components
were completely removed from the product (e.g. RTJava and UAL support).

In Model RealTime 11.0 2020.22 the support for C became an optional install component, and
the "C++ Types" package was removed from the product (since it was obsolete and no longer
used). In the same version the type "unsigned" in the CppPrimitiveDatatypes was removed
since it was a duplicate of "unsigned int".

Some of these components that no longer are available contained datatypes, and it's possible
that your models by mistake contain references to some of those datatypes. For example, you
may have wanted to set the type of an attribute to the C++ type int, but by mistake picked the
Java or UAL int type instead. For example:

<type xmi:type="uml:PrimitiveType" href="pathmap://UAL_LIBRARIES/UALPrimitiveDatatypes.emx#_h28iAFIzEd2ex-
LDlzlaiIA?UALPrimitiveDatatypes/int?"/>

These broken type references may have similar symptoms as described in Unbound type ref-
erences resolution. However, that fixup cannot solve these problems since the target types no
longer exist.

16

This fixup parses files on XML level and replaces references to types from the packages
JavaPrimitiveTypes, RoseCppDatatypes, CORBAPrimitiveTypes, UALPrimitiveDatatypes
and "C++ Types" to corresponding types from the CppPrimitiveDatatypes package. The
matching is based on type name, and if a matching type is not found in the CppPrimitiveData-
Types package, a message is printed in the console to let you manually correct the type refer-
ence. The fixup also updates references to CppPrimitiveDatatypes::unsigned to CppPrimit-
iveDatatypes::unsigned int.

This fixup has an additional wizard page where you can specify if you want it to also replace
references to C types so they instead reference C++ types in CppPrimitiveDatatypes. Mark
this checkbox if you don't have the C support installed in Model RealTime.

Note: This fixup does not support the “Analyze” mode.

Obsolete package import removal
This fixup is somewhat related to the "Incorrect type references fixup" and should typically be
run after running that fixup. The fixup will remove package imports of the "C++ Types" pack-
age, and also for the CPrimitiveDatatypes package if you mark the checkbox on the second
wizard page.

Although it's easy to manually remove obsolete package imports in the Model RealTime UI,
this fixup can be convenient if you have a large number of models that contain these package
imports.

Running fixup { Obsolete package import removal } in analysis mode.
Obsolete Package Import - 'C++ Types' for resource 'CPPModel' with URI
'platform:/resource/ANY/CPPModel.emx#_wmlcQIMYEeqePZtsqr4oGQ'
1 resource(s) with obsolete package imports found

Obsolete profile application removal
This fixup is somewhat related to the "Incorrect type references fixup" and "Obsolete package
import removal" and should typically be run after running these fixups. The fixup will remove
applied profiles that are obsolete or that were applied by mistake in the past. The "C++ Trans-
formation" profile is an obsolete profile and the "CPropertySets" profile should not be applied
unless you have installed the support for C. The latter will therefore only be removed if you
mark the checkbox on the second wizard page.

Although it's easy to manually remove obsolete profile applications in the Model RealTime
UI, this fixup can be convenient if you have a large number of models that have any of these
profiles applied.

Dangling fragment detector
By dangling fragment we mean a model fragment file (.efx) that has become detached from
its parent model files (.efx or .emx), but is still present in the workspace. The reason of such
corruption is unknown but may possibly be related to compare/merge with ClearCase. There
are several types of such fragments:
– a fragment which does not have a reference to its parent, but there is another fragment in

the workspace having a “child” reference to it. In this case, the reference to the parent file
can be restored and the fragment file hence be repaired.

17

– a fragment which does have a reference to its parent, but the parent does not have it in the
list of its children. In this case, the fragment can be removed from the workspace if there
are no other files with references to this fragment.

– a fragment which does not have a reference to its parent, and there are no fragments
which both have it as a child or contain references to it. In this case, the fragment file can
be removed.

This fixup detects dangling fragments of such types and tries to either repair or remove them.
In case none of this can be done, it prints the name of files which have references to a found
dangling fragment. This fixup supports the “Analyze” mode, and you can use it to check if
your workspace contains any dangling fragments. If so, you can apply a Quick Fix on each
found problem in the Problems view. You can also navigate to the dangling fragment in the
Project Explorer.

Output examples:
Applying fixup { Dangling fragment detector }.

Detected 4 dangling fragments.
Fixed container reference for C:\RTModels\.models\Uni_Package.efx
Fixed container reference for C:\RTModels\.models\Test_Package.efx
Fixed container reference for C:\RTModels\.models\Resources_Package.efx
Fixed container reference for C:\RTModels\.models\GenericDataClasses_Package.efx
Fixed 4 of dangling fragments

Applying fixup { Dangling fragment detector }.

Detected 1 dangling fragments.
Fixed container reference for C:\RTModels\model\nControl.efx
Fixed 1 of dangling fragments

Connector ends updater
Although composite structure diagrams are usually placed in capsules, it is also possible to
have such diagrams in collaborations. If such a model was migrated from Rose RT, the
connectors would not be correctly set-up in Model RealTime. They look correct in diagrams,
but in the Properties view one can see that the "Parts" information is missing. Here is an
example:

Correct connector in capsule Incorrect connector in collaboration

More specifically, the reason for the problem is that the Rose RT importer does not set-up the
"Part with Port" property of the connector ends in this particular case.

This fixup can detect this kind of corrupted connectors and fix them.

The output in the console may look like this:
Applying fixup { Connector ends updater }.
Detected connector end with missing capsule part information in the connector
CPPModel::Collaboration1::Protocol1, Protocol1~.
Detected connector end with missing capsule part information in the connector

18

CPPModel::Collaboration1::Protocol1, Protocol1~.
Detected connector end with missing capsule part information in the connector
CPPModel::Collaboration1::Protocol1, Protocol1~2.
Detected connector end with missing capsule part information in the connector
CPPModel::Collaboration1::Protocol1, Protocol1~2.
Updating connector end of CPPModel::Collaboration1::Protocol1, Protocol1~.
Updating connector end of CPPModel::Collaboration1::Protocol1, Protocol1~2.
Updating connector end of CPPModel::Collaboration1::Protocol1, Protocol1~2.
Updating connector end of CPPModel::Collaboration1::Protocol1, Protocol1~.
4 connector end(s) has been updated.

Setting elements for multiplicity labels on structure diagrams
This fixup is related to incorrect multiplicity labels of connectors imported from Rose RT. It is
recommended to run this fixup only if you have problems mentioned below when migrating
diagrams from Rose RT. It should not be run periodically with already imported diagrams.
Consider this example of a connector with defined multiplicity:

The diagram view (i.e. the line) that is associated with this semantic connector is represented
in the model file as an edge with child nodes corresponding to connection view properties, in-
cluding multiplicity label(s).

view definition
<edges xmi:type="umlnotation:UMLConnector" xmi:id="_Mnu629kUEeS3cPjeadzk6Q"
source="_Mnu6ztkUEeS3cPjeadzk6Q" target="_Mnu6idkUEeS3cPjeadzk6Q" fontHeight="8"...>
…..
multiplicity labels definition
<children xmi:type="notation:DecorationNode" xmi:id="_Mnu64NkUEeS3cPjeadzk6Q" visible="false" type="ToMultipli-
cityLabel">
<children xmi:type="notation:BasicDecorationNode" xmi:id="_Mnu64dkUEeS3cPjeadzk6Q" type="ToMultiplicity"/>

19

<element xmi:type="uml:ConnectorEnd" href="platform:/resource/RG_Model RealTimePackages/Function_Pack-
age.efx#_E5874J4DEeOm6Mbl35H6pQ?A_ConvenienceFunction/C4CBD816C01AD/%3CConnectorEnd%3E?"/>
<layoutConstraint xmi:type="notation:Location" xmi:id="_Mnu64tkUEeS3cPjeadzk6Q" y="396"/>
</children>
<children xmi:type="notation:DecorationNode" xmi:id="_Mnu649kUEeS3cPjeadzk6Q" visible="false" type="FromMultipli-
cityLabel">
<children xmi:type="notation:BasicDecorationNode" xmi:id="_Mnu65NkUEeS3cPjeadzk6Q" type="FromMultiplicity"/>
<element xmi:type="uml:ConnectorEnd" href="platform:/resource/RG_Model RealTimePackages/Function_Pack-
age.efx#_E58U0Z4DEeOm6Mbl35H6pQ?/A_ConvenienceFunction/C4CBD816C01AD/%3CConnectorEnd%3E?"/>
<layoutConstraint xmi:type="notation:Location" xmi:id="_Mnu65dkUEeS3cPjeadzk6Q" y="396"/>
</children>

The nodes associated with the multiplicity labels should refer to the connector ends of the
connector. This is required for correct view representation on composite structure diagram and
all its inherited view representations as well.
It has been observed that after the import from Rose RT several connectors have missing se-
mantic elements for its multiplicity labels. This may prevent the composite structure diagram
from being possible to open:

This fixup determines if there are missing connector ends and corrects related model files.
When you run this fixup make sure that your workspace contains all relevant projects (includ-
ing those which contains related inherited elements).

Add missing package imports
Practically all applications make use of primitive C++ types (int, char, bool etc). To make
these types available in your model (so they can be found when searching or using type com-
pletion), a package CppPrimitiveDatatypes is by default imported in all newly created Model
RealTime models. However, models imported by the Rose RT importer may sometimes lack
this package import. The consequence will be that references to primitive C++ types will be
unbound, and that features such as type completion don't work for primitive types.

20

You can easily add a package import manually using the Add UML - Relationship - Package
Import context menu command in the Project Explorer. However, if you have many models
that lack this package import you can benefit from running this model fixup.
In Analyze mode the fixup will report top-level packages it finds which lacks a package im-
port to CppPrimitiveDatatypes. In Update mode the fixup will add the missing package im-
port for those packages.

Applying fixup { Add missing package imports }.
Package Import - 'CppPrimitiveDatatypes' missing for resource
'TrafficLightComponent' with URI
'platform:/resource/TL/TrafficLightComponent.emx#_lBTt0KG6EeqtIqTcJcQviQ'
1 resources with missing imports found
Fixing in progress for missing import for 'TrafficLightComponent' with location
'platform:/resource/TL/TrafficLightComponent.emx#_lBTt0KG6EeqtIqTcJcQviQ' !!
Fixed 1 missing Package imports in { L/TL/TrafficLightComponent.emx }
Finished!

Use CDATA in model files
Starting with Model RealTime 11 2020.33 it's possible to save model files so that code snip-
pets and documentation texts are stored in CDATA sections. This behavior is controlled by a
preference Modeling - Use CDATA when saving model files which by default is not set. Using
CDATA has the advantage that code and documentation from the model can be stored without
any XML escape characters. This makes these texts more readable when viewing a model file
in a text editor. Here is an example:

This fixup helps with converting multiple model files to use CDATA, so that you don't need to
save them one by one. It can be useful when you want to migrate everything to use the new
file format, and to commit all changes at once.

21

	Introduction
	Installation
	Versions

	Using the Model Fixup Plugin
	Recommendations on the Order of Running Fixups

	Model Fixups
	Alien symbols removal
	Duplicate IDs removal for template parameters
	Unnecessary regions removal
	Unnecessary entry/exit points removal
	Unnecessary junction points removal
	Obsolete URI property removal
	Unbound type references resolution
	Delete name for state chart diagrams called 'State Diagram'
	Dependency fixup
	Incomplete connection views removal
	InternalTransitions invalid view removal
	File format fixup
	Incorrect type references fixup
	Obsolete package import removal
	Obsolete profile application removal
	Dangling fragment detector
	Connector ends updater
	Setting elements for multiplicity labels on structure diagrams
	Add missing package imports
	Use CDATA in model files

