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This document describes the concepts involved when designing real-time applications using 
DevOps Model RealTime. This includes the subset of the Unified Modeling Language (UML)
that is used when modeling these kinds of applications. It also includes some additional con-
cepts that are introduced by means of a UML RealTime profile known as UML-RT, which 
further constrains and formalizes the structure and behavior of these kinds of models. Finally 
it includes concepts present in a run-time library called the RT services library, some of which
are available for use in the model.

Readers of this document are assumed to have a basic understanding of UML 2 and real-time 
applications. The document was last updated for Model RealTime 11.1. All screen shots were 
captured on the Windows platform.



Introduction
Real-time applications have special characteristics compared to other kinds of applications. 
For example, real-time applications are often complex, event-driven, stateful, resource effi-
cient and distributed. The purpose of Model RealTime is to facilitate the modeling and devel-
opment of real-time applications. This is accomplished by

1. Defining a smaller subset of the otherwise very large UML. This subset is known as 
"the RT subset of UML".

2. Introducing new real-time specific concepts by means of a profile (called UML-RT).
3. Supporting an automated transformation of models that conform to the above con-

straints to yield efficient target code, such as C++.
4. Providing a run-time library (known as the RT services library) which together with 

generated and hand-written code can be compiled into an executable real-time applica-
tion.

From a tool's point of view Model RealTime is an extension on top of Eclipse. It is normally 
installed on the Eclipse for C/C++ Development distribution which means that it contains a 
full-fledged C/C++ development environment (CDT). However, it can also be used as a more 
general modeling tool, and in fact it supports the full UML 2 standard. This means that Model
RealTime may appear somewhat overwhelming for someone who only wants to use the 
smaller RT subset for designing an application. This document is intended to help out by de-
scribing the RT subset of UML, as well as the UML-RT profile and libraries. This document 
is intended to cover all concepts which a designer has to be familiar with to be able to create 
models for real-time applications using Model RealTime. 

It should be mentioned that other parts of the UML also may be useful for modeling a real-
time application. For example, during analysis phases and for systems modeling, many other 
language constructs from UML are useful, such as the ones shown in use case and sequence 
diagrams. This document does not cover these language constructs and is therefore mainly in-
tended for users who use Model RealTime for designing and developing RT models that are 
transformed into real-time application code.
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The RT Subset of UML
A real-time application model in Model RealTime is constructed by using a relatively small 
number of concepts:

 Type concepts
o Capsules
o Passive classes
o Protocols
o Enumerations
o Interfaces
o Data types (for type aliases)

 Grouping concepts
o Packages

 Relationship concepts
o Generalizations
o Dependencies
o Associations

 Structural concepts
o Attributes
o Ports
o Connectors

 Behavioral concepts
o Operations
o Events
o State machines

 Others
o Artifacts

In addition, an RT model contains action code, typically C++. Such code appears in the model
at various places where action code is allowed, for example as the body of operations, the ef-
fect of transitions and entry/exit behaviors of states. But action code is also used for expres-
sions, such as transition guards and attribute default values. Furthermore, the types that are 
available in the action code are also frequently used in the model, both primitive types (int, 
bool etc.) and external data types (e.g. hand-written C++ classes).
Where action code is used in examples of this document we will use C++. However, it should 
be mentioned that Model RealTime also supports C code.

The rest of this chapter goes through the above mentioned concepts in more detail.

Capsule
Capsules are the fundamental building blocks of a real-time model. They represent units 
within the modeled system which encapsulate data and structure as well as behavior. A cap-
sule is an active UML object which means that it has its own independent flow of control.
In the RT model a capsule is a class stereotyped by a «Capsule» stereotype. 
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Just like a regular UML class a capsule can have attributes and operations. However, capsules 
have some constraints compared to regular classes, which make them suited for real-time ap-
plications. The most important constraint is that references to capsule instances should not be 
passed around in the application, like regular class instance references. All references to cap-
sule instances are strictly managed by the underlying run-time system, which avoids concur-
rency problems that otherwise may arise in real-time applications. In practice this constraint 
implies the following:

 A capsule instance is always created by a service in the run-time library, never by di-
rect use of the 'new' operator1. The process of instantiating a capsule is called incarna-
tion, and a capsule instance is said to be an incarnation of a capsule.
A capsule instance is usually stored in a part attribute of another capsule. Such part at-
tributes are called capsule parts.

 Although a capsule can have public non-static operations and attributes, it is not rec-
ommended to access these from outside the capsule, since this would require holding a
reference to a capsule instance2. However, static operations and attributes can be ac-
cessed without having a capsule instance.

 The normal means to communicate with a capsule instance is by sending messages to 
it. However, messages cannot be directly sent to a capsule instance since that also 
would require holding a reference to it. Instead, messages are sent through certain 
ports, and get routed through connectors and relay ports until a receiver capsule in-
stance is reached. Ports defined on a capsule, which are so called service ports, define
the main external interface of a capsule, i.e. which events it can send and receive.

A capsule may contain a composite structure, defined using a composite structure diagram. 
The composite structure defines which capsule parts that are contained in a capsule. It may 
also define how the ports of a capsule are connected to other ports on these capsule parts by 
means of connectors. Such a connector structure defines the routing of messages that arrive at 
the capsule's service ports. See Composite Structure for more information about this.

A capsule may also contain behavior in the form of a state machine, defined using a state ma-
chine diagram. Action code in this state machine can access attributes and operations defined 
on the capsule. See State Machine for more information about the state machine of a capsule.

As said above, a capsule has its own independent flow of control. To be precise, each capsule 
instance that has a state machine has its own flow of control, called a logical thread of con-

1Use of the 'new' operator is actually allowed in some cases, for example to pass initialization data to the capsule 
instance, but it then only can be used in certain specific places that are known by the run-time system.
2It is indeed safe to access public operations and attributes in those cases where the calling code is guaranteed to 
execute in the same physical thread as the capsule.
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trol. It is possible to let the same processing thread (known as a physical thread) drive multi-
ple logical threads, but this is completely transparent and does not affect the design of the cap-
sule in any way. In fact, one of the benefits with designing real-time applications using Model
RealTime is that it is easy to change the mapping of logical threads onto physical threads 
without affecting the design of the model.

It should be noted that since action code like C++ is used, it is of course possible to write code
that will get hold of a capsule instance and send this reference around in the application. How-
ever, if you do this you must be very careful. Making such a reference accessible for code that
runs in a different logical thread may lead to run-time problems and is not recommended.

Passive Class
Not all objects in a real-time application need their own logical thread. Many objects are sim-
ple passive data objects that always run in the context of another logical thread. To model 
such objects regular UML classes are used. To distinguish them from capsules, which also are 
classes, the term passive class or data class is often used.

Passive classes have none of the constraints that are put on capsules. However, this also 
means that you have to be careful to avoid accessing the same passive class instance simulta-
neously from different logical threads, as this could lead to concurrency problems if these log-
ical threads are mapped onto different physical threads.

In addition to regular operations, implemented in C++, it is possible to define the behavior of 
a passive class using a state machine. See State Machine in Passive Class for more informa-
tion about passive class state machines.

It is usually good practice to let the instances of passive classes be managed by the capsule in 
the logical thread of which they will be run. Giving a reference to the capsule to a passive 
class instance is not a problem if this recommendation is followed, since all code accessing 
that reference then will run within the same logical thread. With a reference to the managing 
capsule a passive class instance can invoke operations on the capsule, which can be useful in 
order to, for example, send events through the ports of the capsule.

If you want to pass a reference to a capsule instance to a passive class, it's recommended to let
the capsule implement an interface which exposes only the operations that the passive class 
needs to call. Thereby you can define more clearly what functionality the capsule exposes to 
its passive classes, and you avoid the risk that they accidentally use other parts of the capsule 
implementation.

Template Classes
A passive class may be parameterized by means of template parameters. This makes the class 
more generic so that it can be used in different contexts in which it needs to behave slightly 
differently. There are two kinds of template parameters:

• Type template parameters
• Non-type template parameters

The template parameters of a class are formal template parameters, and when a template 
class is used (a.k.a. instantiated) you need to provide corresponding actual template parame-
ters. For a type template parameter you can use any type (for example a class) as actual tem-
plate parameter. For a non-type template parameter you can for example use a constant at-
tribute as actual template parameter.
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In addition to classes, you can define template parameters for some other types too (Interface 
and Type Alias). Operations can also have template parameters.

It is possible to define template parameters for capsules, but this will require you to also pro-
vide the code that will create an instance of that capsule (since actual template parameters 
need to be provided when incarnating such a capsule). As mentioned in the footnote above 
such code can only be placed in certain places known by the run-time system. There are also 
some limitations on how such template parameters can be referenced from the capsule imple-
mentation.

In diagrams, the template parameters are shown in the upper right corner of symbols. Here is 
an example ("att" is a non-type template parameter and "T" is a type template parameter):

Here are two examples when template parameters can be useful:
• A class with an attribute, where the type of the attribute needs to be different in differ-

ent contexts. Type the attribute with a type template parameter.
• A class with an array attribute, where the size of the array needs to be different in dif-

ferent contexts. Specify the array size using a non-type template parameter, for which 
you can give a constant of integral type when the template is instantiated.

Both type and non-type template parameters can have defaults which will be used in case no 
actual template parameter is provided for that formal template parameter when the template is
instantiated.

Protocol
A protocol defines what kinds of messages that may be sent in to and out from a port. Incom-
ing messages are described by in-events and outgoing messages are described by out-events. 
Hence, a protocol is a kind of communication contract between users of a port. A protocol is 
used as the type of all ports which share the same contract. 

In the RT model a protocol is a UML collaboration stereotyped by a «Protocol» stereotype.

In a class diagram protocols can be visualized using class-like symbols as shown in the exam-
ple below:
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In this example we can see that the capsule "Adder" has a port "request_port" which is typed 
by the protocol "PI_REQ". That protocol has two events; an in-event called "compute" and an
out-event called "result". This tells us that if we want to communicate with an Adder capsule 
instance using its "request_port", then the only event we can send to it is "compute". It also 
tells us that the only event we can receive from an Adder capsule instance through its "re-
quest_port" is "result".

A protocol is defined from the view of one particular port (which it is typing). So in the gen-
eral case you may need to define one protocol for each port that exists in your model. How-
ever, a very common pattern is that communication takes place between two ports A and B, 
where the events that can be received by A are exactly the events that can be sent by B. And in
the same way, the events that can be sent by A are exactly the events that can be received by 
B. For this common case it is enough to define one protocol (called a binary protocol, since 
it involves two ports), which types both ports. Then, one of the ports is set to be conjugated, 
which means that the sets of input and output events are swapped, so that events specified as 
in-events actually become out-events, and events specified as out-events actually become in-
events. Here is an example:

The type of both "request_port" and "computer" is the protocol "PI_REQ". However, the 
"computer" port is conjugated, as can be seen by the "~" sign at the end of its name (and in 
the port symbol).

Using binary protocols reduces the number of protocols that have to be created, and also em-
phasizes that two ports participate in the exchange of the same set of events.
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RT Service Protocols
The RT services library provides a few special protocols that you can use for typing ports in 
your model. Each of these protocols provides a particular kind of service, and ports typed by 
these protocols are ports which are used for sending events to the services library, as well as 
receiving events from it. Also, the classes in the RT services library that correspond to each of
these service protocols have functions which provide additional functionality. 

 Exception
This protocol is used for handling run-time exceptions that may be raised in the appli-
cation. Each in-event in the Exception protocol specifies an exception which can be 
handled.

Note that the services library does not itself raise any exceptions, so your application 
must raise them when needed. Here is an example of how to raise the "userError" ex-
ception ("ex" is a port typed by the Exception protocol):

if(!myPort.start().send()) 
    ex.userError(RTString("Send on myPort failed.")).raise();

For more information about the different exception events see the documentation of 
the RT services library.

 External
This protocol is used for sending events to a capsule instance from other threads that 
are external to the RT services library and the code that is generated from the model. 

The class in the RT services library which corresponds to this protocol has functions 
for enabling and disabling reception of external events on the port. These functions 
must be called from the thread on which the capsule instance runs. When enable() 
has been called, exactly one external event can be received, until disable() is called. 
The external thread sends an event by calling a raise() function on the port. Here is 
an example:

if (theExternalPort->raise()==0){ 
    //fail 
} 
else { 
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    //pass 
}

Note that the raise() function must not be called from the same thread on which the 
capsule instance runs.

 Frame
This protocol does not contain any events, but the corresponding class in the RT ser-
vices library provides several useful functions. Among others the functions for incar-
nating a capsule are found here. Here is an example of code for incarnating a capsule 
instance into the optional capsule part "terminal" ("frame" is a port typed by the Frame
protocol):

RTActorId capsule_id = frame.incarnate(terminal);

For more information about the functions that are available on the Frame class, see the
documentation of the RT services library.

 Log
This protocol does not contain any events, but the corresponding class in the RT ser-
vices library provides some functions related to logging text messages to the console. 
They can in particular be useful as a basic means of debugging or tracing. Here is an 
example ("logPort" is a port typed by the Log protocol):

logPort.log("Initialization completed!");

See the documentation of the RT services library for more information about what 
functions that are available in the Log class.

 Timing
This protocol is used for implementing timers. A port typed by this protocol acts as a 
timer which will send a timeout event either at a particular point in time (absolute, or 
relative from now) or at periodic intervals. 

Functions for setting the timer are available on the corresponding Timing service li-
brary class. Here is an example of code for setting a timer that will expire in 10 sec-
onds from now ("timer" is a port typed by the Timing protocol):

timer.informIn(RTTimespec(10, 0));

See the documentation of the RT services library for more information about the Tim-
ing class.

Protocol State Machines and Interactions
In order to specify examples of valid and typical communication patterns for a protocol usage,
it is possible to create state machines and interactions inside the protocol. Such protocol state 
machines and interactions do not define anything, and are therefore ignored when transform-
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ing the RT model to target code. However, protocol state machines and interactions can still 
be valuable as a specification and documentation of the protocol.

Here is an example of a protocol interaction for the "PI_REQ" protocol mentioned above:

 

Protocol interactions and state machines can be particularly useful for situations when differ-
ent teams design two capsules that communicate with each other using a certain protocol. The
teams can use the sequence and state machine diagrams in the protocol to understand what is 
expected from their capsules, such as the expected sequences of messages and what data that 
is passed with these messages.

Package
A package is a grouping of model elements that are related. A package has no semantic signif-
icance other than to provide a scope for the names of the contained elements. However, note 
that the C++ transformation does not support packages as a means to scope the C++ defini-
tions that correspond to these elements. This means that you must choose names for elements 
located in different packages so they do not conflict with each other. One approach to ensure 
this could be to use a prefix for all elements that are contained in a package. For more infor-
mation about naming considerations see Names.

Each RT model is rooted in a top-level package. This package can either be a regular package 
or it can be a model package. A model package is denoted by a small triangle inside. From an 
RT point of view there is no difference between a regular package and a model package. Here 
is an example of a top-level model package that contains a regular package.

Each top-level package is in turn contained in a project. A project is an Eclipse concept and 
does not relate to UML. The Eclipse workspace may contain multiple projects, some of which
are model projects and some of which are other kinds of projects. Besides from the model 
projects, the other important category of projects are the ones that are generated from the 
model, and that contains generated target code, such as C++. 
Here is an example of a model project "Pi_mult" and a corresponding C++ project 
"Pi_mult_target" which contains the C++ code that is generated from the model project.

11



Enumeration
An enumeration is a data type which has a number of literals. Each literal may be given a 
value, which is an expression written using action code. A literal value should be integral. 
Enumerations can be used as the type of attributes and operation parameters. They can also be
used as the type of event parameters, and hence be sent between capsule instances. It is al-
lowed to add operations and attributes to an enumeration, but these will be ignored when 
translating the RT model to C++ code.

Here is an example of an enumeration with three literals. Since the literal values are expressed
using action code they are not shown in UML diagrams, but can easily be viewed and edited 
using the Code view or Code editor.

If generated code is compiled with a compiler that supports C++ 11, you can define the 
enumeration as "scoped", and you can specify an implementation type for it. Scoped 
enumerations have the benefit that they define a naming scope so that names of literals in 
different enumerations won't clash. Specifying an implementation type for an enumeration 
can be useful for performance reasons when the default type (which is int) is not optimal from
an implementation point of view.

Interface
An interface is an abstract definition of a type, which defines a number of operations. These 
operations consist of a signature only and may not contain implementations. Classes (both 
capsules and passive classes) may realize (a.k.a implement) an interface. By doing so they are
obliged to provide the same set of operations as in the interface. This means that clients of a 
class can be given limited access to the class by providing them only with a reference to the 
interface that the class realizes, rather than a reference to the class itself. The clients can then 
only call the operations that are present in the interface.
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Consider this example:

A client which has a reference to a PC instance can call both the getData() and setData() 
operations, since they are both public. However, a client which only has been given a refer-
ence to an instance typed by the realized interface Ifc, can only call the getData() operation 
since only that operation is available in the interface. The interface hence makes it possible to 
control which functionality of a class to expose to different users of the class.

It's also often useful to define interfaces to be realized by capsules. For example, if you need 
to pass a reference to a capsule instance to a passive class, it's recommended to let the capsule
implement an interface which exposes only the operations that the passive class should be al-
lowed to call. Thereby you can define precisely what functionality the capsule exposes to the 
passive class, and you avoid to accidentally use other parts of the capsule implementation in 
the class.

As mentioned in Template Classes, an interface can have template parameters to make it more
generic.

Data Type ("Type Alias")
UML data types can be used to represent type aliases in the model. A type alias is a C++ 11 
concept which allows you to give an alternative, more readable, name to another type that ex-
ist in the model or in the target C++ code. It's in particular useful for "non-trivial" types such 
as types with template parameters, pointer types etc. Using such types can otherwise require 
quite a lot of typing, since several template parameters may be present, each of which should 
be replaced with a type or value in all places where the type is used.

Here is an example of a type alias data type "IntList" which provides an alias name for a list 
of integers:
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As mentioned in Template Classes, a type alias data type can have template parameters to 
make it more generic. For example, by replacing "unsigned int" in the above example with a 
class template parameter, the type alias could represent a generic list of elements, the type of 
which is decided each time the type alias is used.

A type alias without template parameters is similar to a typedef in C/C++. If your target com-
piler does not support C++ 11, you cannot use type aliases, but you can still use typedefs. To 
represent a typedef in the model you can use a regular class, where the "Kind" property in the 
C++ General property page has been set to "typedef". Specify the type of the typedef in the 
"Implementation Type" property.

Both when using typedef classes and type alias data types it's convenient to include the neces-
sary header files where the implementation type or alias type is defined. For both the exam-
ples above we would accomplish this by specifying a "header preface" code snippet:

#include <list>

Generalization
Generalization relationships are used for inheriting structure and behavior from a general par-
ent class, to specialized child classes. It is allowed to use generalizations both for capsules and
passive classes, but the parent and child classes must be of the same kind, i.e. either both cap-
sules or both passive classes. In addition it’s also possible to use generalizations between in-
terfaces and protocols.

A specialized child class may access all attributes and operations from the parent class, except
those that are declared private. Other things that are inherited are ports, the composite struc-
ture (capsule parts and connectors) and the state machine.

Generalizations can be shown in class diagrams. For example:
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An inherited element can be redefined in the specialized class in order to extend or modify it. 
A redefined element is marked by a small arrow in the upper left corner (see for example the 
icon of the "proto_1" port in the "SubCapsule" in the above example). Usually Model Real-
Time creates redefined elements automatically when needed. For example, in a composite 
structure diagram inherited ports will be shown next to locally defined ports. The inherited 
ports are shown using a "dimmed" shape to distinguish them from locally defined ports. When
you modify an inherited port shown with such a dimmed shape, Model RealTime will auto-
matically create a redefined port in the inherited class, which will contain the modification. 
The port in the base capsule will not be modified. Let's clarify with some pictures:

Inherited port, shown with a dimmed shape. It has not been modified and 
therefore only exists in the super capsule.

Inherited port which has been redefined. It now exists both in the super capsule
and the sub capsule.

Locally defined port. It only exists in the sub capsule.

Generalization of Protocols
In addition to classes and interfaces, generalizations can also be used for protocols. The sub 
protocol will inherit all events defined in the super protocol. Here is an example:
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A port typed by "SubProto" will both have an in-event "parentEvent" and an out-event 
"myEvent".

Promotion and Demotion
When working in a class inheritance hierarchy it is often the case that you want to refactor the
model. For example, you may realize that an operation that was initially created in a sub class,
actually should better belong to the super class. The refactoring operation to move an element 
from a sub class to a super class is called promotion. 

The opposite to promotion is called demotion, i.e. to move an element from a super class to a 
sub class. If the super class has multiple sub classes the element will be copied to each of 
these sub classes.

Model RealTime supports promotion and demotion for some elements by means of com-
mands in the context menu. Be aware that after promotion and demotion you may need to 
change names of moved elements to avoid naming conflicts.

Excluding Inherited Elements
It is possible to specify that certain inherited elements actually should not be inherited. When 
this is done we say that the element is excluded in the sub class. Excluded elements are re-
moved from diagrams in the sub class, since they no longer are available as inherited ele-
ments. 

In the Project Explorer an excluded element is marked with an «excluded» stereotype from 
the UML-RT profile. Here is an example of an excluded port:

To mark an element as excluded use the Exclude command that is present in the context menu
of those elements that can be excluded. In the same context menu you will also find the Rein-
herit command which does the opposite, i.e. it converts an excluded element to become inher-
ited again.

Note that even if a port or capsule part is excluded, the corresponding C++ member variable 
cannot be removed from the C++ class that represents the sub capsule. You should therefore 
not reuse the names of excluded elements, or you will get name conflicts in generated code 
when it is compiled.
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Inheritance Rearrangement
When a generalization relationship is deleted from the model, Model RealTime will provide 
you with a possibility to automatically copy all inherited elements from the previous super 
class down to the sub class. This operation is known as absorption. 

Absorption is also useful when a generalization relationship is moved from one sub class to 
another, since the effect for the previous sub class is the same as if the generalization was 
deleted. In addition, when moving a generalization it may also be useful to automatically ex-
clude all elements from the super class in the new sub class. 

Model RealTime will provide a dialog when you perform an inheritance rearrangement, 
which provides both absorption and exclusion of super class properties:

Dependency
Dependency relationships are used for expressing that one element in some sense depends on 
another element. There can be a number of different ways in which the client element de-
pends on the supplier element. Some examples:

 A client class accesses an attribute or operation defined in a supplier class.
 A capsule communicates with another capsule, although there is no direct connector 

between the capsule parts.
 A type alias data type references another type as its alias type.

Sometimes dependencies are informal descriptions of dependencies within the application. 
However, sometimes it is necessary to add dependencies to get correct inclusions or forward 
references in generated C++ files. For example, if you have a capsule C with an attribute that 
is typed by a class D, you have to add a dependency from C to D. Properties on the depen-
dency are used to control whether it should be translated to a forward reference or an inclu-
sion in the generated C++ header and implementation file. 
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What if type D is not a type defined in the model, but a C++ type defined in an external 
header file? In that case the dependency would typically manifest itself as an #include di-
rective in the header preface code snippet of C. Of course, you can also choose to create your 
own representation of D in the model, and set properties so that no code is generated from it. 
Then you can create a dependency to D if you for example want to show this relationship in a 
class diagram. Note, however, that in this case the dependency is purely informal, and it is the
#include which ensures the correctness of the generated code.

Association
Association relationships are used for connecting classes, both capsules and passive classes. 
The meaning of an association at run-time is that instances of associated classes can access 
each other. Depending on the various properties of the association, different rules exist for 
how the instances can access each other.

 With a directed association, only one of the instances can access the other instance. 
That is, a directed association is only navigable in one direction. For example:

Here, an instance of A will at run-time have a reference to an instance of B.

 With a bi-directed association, both instances can access each other. That is, a bi-di-
rected association is navigable in both directions. For example:

Here, an instance of A will at run-time have a reference to an instance of B, which in 
turn will have a reference to an instance of A (not necessarily the same instance, 
though).

The navigability of an association translates to attributes which are located in both the associ-
ated classes (in case of a bi-directed association) or in just one of the classes (in case of a di-
rected association). Other properties shown in a class diagram for the association are really 
properties of these attributes, for example multiplicity and visibility. See Attribute for more 
information about attributes.

Attribute
Attributes of a class define slots where at run-time data can be put in an instance of the class. 
The type of the data that is put in a slot must be compatible with the type of the attribute. All 
types from C/C++ may be used (both primitive types such as int or bool, as well as user-de-
fined types such as enums, classes or typedefs). Types defined in the model may of course 
also be used, such as passive classes, interfaces, enumerations and type alias data types. 

Attributes are shown in class diagrams, either in the attribute compartment of the class, or by 
means of an association line. These two visualizations are equivalent. For example, these two 
class diagrams have the same meaning:
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If an attribute has composite aggregation it is a part. As this name indicates the class instance 
that is put in the slot for a composite attribute has a lifetime relationship with the container 
class instance (it is a part of the container instance). If the container class instance is de-
stroyed, so is the part instance. 

If the type of a composite attribute is a capsule, the attribute is a capsule part. Capsule parts 
can be visualized in a composite structure diagram for the capsule. See Composite Structure 
for more about this.

There are three kinds of capsule parts:

1. Fixed capsule parts. By default capsule parts are fixed, meaning that they are created 
automatically when the container capsule is created, and destroyed when the container 
is destroyed. Fixed capsule parts by default have multiplicity 1.
Here is an example of a fixed capsule part shown in a composite structure diagram:

2. Optional capsule parts. An optional capsule part does not have a strong lifetime rela-
tionship with the container capsule. It may be created (incarnated) after the container 
has been created, and may be destroyed before the container is destroyed. Optional 
capsule parts by default have multiplicity 0..1.
An optional capsule part is shown in a composite structure diagram like this:

3. Plugin capsule parts. A plugin capsule part is a place-holder for a capsule part that is 
populated with capsule instances dynamically, at run-time. Plugin capsule parts are 
necessary when it is not statically known what specific capsule instances that will be 
put at these slots at run-time. When "plugging in" (also known as importing) a capsule 
instance into a plugin capsule part, connector instances are automatically established 
to allow the capsule instance to take part in the communication that can take place on 
these connectors. Later the capsule instance can be removed (also known as deported) 
from the plugin capsule part, and then connector instances are automatically removed. 
Over time a capsule instance can move between different plugin capsule parts, and 
hence play different roles in the composite structure. 
The same capsule instance can be imported into more than one plugin capsule part. In 
general a capsule instance can be located in any number of plugin capsule parts, but at 
most in one optional or fixed capsule part. It is not allowed to import a capsule in-
stance if one of its ports already is bound in its current location.
Plugin capsule parts by default have multiplicity 0..1.
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A plugin capsule part is shown in a composite structure diagram like this:

For optional and plugin capsule parts the actual type of a capsule instance that is added to the 
capsule part may or may not be exactly the same as the type of the capsule part. A capsule part
has a property Substitutable Type which can be edited using the Properties view. If this prop-
erty is true, which is the default, then the type of a capsule instance only has to be compatible 
with the type of the capsule part. If Substitutable Type is false, then the type of the instance 
has to match the type of the capsule part exactly.

Two capsules are considered to have compatible types if their external interfaces are compati-
ble. This means that their public service ports should be typed by the same protocols. Note 
that it is not always the case that a sub capsule is compatible with the super capsule from 
which it inherits. Consider this example:

Here, although "Sub2" inherits from "Base" these capsules are not compatible since "Sub2" 
has an additional public service port. Capsule "Sub1" is however compatible with "Base".

Another aggregation kind is "Shared" which can be used on attributes typed by passive 
classes. Such attributes are translated to pointers in generated C++ code.

Multiplicity
The default multiplicity that is set for an attribute when it is created can be changed in the 
General tab of the Properties view:

The most common multiplicity choices 0..1 and 1 are available in the drop down menu, but 
you can type any positive number in the field. 

If a capsule part is set to have a multiplicity other than 1, the multiplicity appears in its upper 
left corner of the part symbol. Also, the part symbol gets the appearance of a "stack" to show 
that it can hold multiple instances. For example, here is a capsule part with multiplicity 23.
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Since this capsule part is fixed, incarnation of the container capsule C will immediately lead 
to 23 incarnations of capsule D. And when the C instance is destroyed, these 23 D instances 
will also be destroyed.

If we instead make this capsule part optional, the multiplicity has to be specified as 0..23 be-
cause the multiplicity for an optional capsule part must include 0 (that is what makes it op-
tional).

In this case incarnation of C will not automatically lead to any incarnations of D. Instead you 
have to manually incarnate capsule D into the capsule part using the Frame service. Here is 
the C++ code for adding 15 incarnations of D into capsule part "dR1":

for (int i = 0; i < 15; i++) {
    RTActorId d = frame.incarnate(dR1);
    if (! d.isValid()) 
        context()->perror("Incarnation failed!");    
}

If the multiplicity of an attribute typed by a passive class is something else than "None", the 
corresponding C++ variable will be an array. Note that multiplicity "None" is not treated the 
same as multiplicity 1, although they are both shown as 1 in the Properties view (because the 
default multiplicity in UML is 1). If you set the multiplicity to 1 the C++ type will be an array
of length 1 ([1]).

Port
Ports are special kinds of attributes of a capsule. They are part attributes, and hence they are 
owned by the capsule instance in the sense that they are created when the capsule instance is 
created and destroyed when it is destroyed. Ports are typed by protocols, which specify which 
events that may be sent to or from the port (see Protocol). 

A port has a number of properties which are edited using the Properties view:

21



 Service

A service port is part of the external interface of a capsule. The complete set of service
ports for a capsule constitutes the complete external interface of the capsule. The Ser-
vice property is by default true.

 Behavior

A behavior port routes messages from or to the state machine of the capsule. The Be-
havior property is by default false.

 Conjugated

A conjugated port swaps the meaning of in-events and out-events of its protocol. That 
is, the out-events can be sent to a conjugated port, and the in-events can be received 
from a conjugated port. Besides from their special symbol conjugated ports are de-
noted by a '~' sign at the end of their name. The Conjugated property is by default 
false.

 Wired
A wired port must be connected by a connector to another port in order to be able to 
send or receive events. Non-wired ports are instead connected dynamically to other 
non-wired ports at run-time. Non-wired ports are useful for modeling situations where 
the communication paths between capsule instances are not statically known. See Dy-
namic Connections for Non-Wired Ports for more information about how to work with
non-wired ports. The Wired property is by default true.

 Publish
A non-wired port can either be published or non-published depending on the role its 
container capsule instance plays in a client/server communication architecture. See 
Dynamic Connections for Non-Wired Ports for more information. The Publish prop-
erty is by default false.

 Notification
If this property is true, the RT services library will send notification events when the 
port gets connected or disconnected. These events are called rtBound and rtUnbound 
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and are described in The rtBound and rtUnbound Events. The Notification property is 
by default true.

The messages for all kinds of events (except messages for external events; see the External 
protocol in RT Service Protocols) are sent from a sender capsule instance out through one of 
its behavior ports. The messages then get routed through a path of connections (corresponding
to either statically defined connectors, or dynamically created connections for non-wired 
ports). During this routing a message may pass a number of relay ports which funnel the 
message to or from capsule instances located in capsule parts. Ultimately the message reaches
a behavior port on the receiver capsule instance, and will then eventually be handled by the 
state machine of that capsule instance.

Note that if a message arrives at a relay port without any connections, the path from the 
sender to the receiver is broken and the message will be lost. This usually indicates a problem 
in the design of the application.

As an example consider the composite structure diagrams below:

If the state machine of the "C2" capsule sends a message out through its "p2" port it will first 
arrive at the "p1" port of the "C1" capsule due to the connector between these two ports. How-
ever, as we can see in the composite structure diagram of "C1" the "p1" port delegates incom-
ing messages to the port "p3" on capsule "C3". Hence, "p1" is a relay port.

Model RealTime has a useful command in the context menu of a port that is called "Find Con-
nected Ports". This command allows you to find the port to which a selected port is con-
nected. The command will ask you if you want to traverse relay ports (to find the ultimate 
port to which the message will be sent) or not (to just find the port to which the selected port 
is directly connected).

In the composite structure diagram for "C1" above we can also see that a connector is missing
between the "q1" and the "q3" ports. Hence, the communication path between "q2" and "q3" 
is broken, and if a message is sent out through "q2" an error message will be printed at run-
time to inform that the port is not connected.

Just like regular attributes a port may have non-single multiplicity (N > 1). This is for exam-
ple useful in order to let multiple clients connect to a single server port. The multiplicity of 
the server port then decides the maximum number of simultaneously connected clients. Ports 
with non-single multiplicity are sometimes said to be replicated (because they may contain 
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many "replicas" of the port). The replication factor denotes the current number of port in-
stances (i.e. connections) for the port. The graphical notation for a port with non-single multi-
plicity is a "stack of ports": 

Typically the port multiplicity is something that is statically specified in the design. However, 
it is possible to change the multiplicity at run-time by calling a resize() function on the port.
Doing so may give room for more connections (if the multiplicity upper bound is increased) 
but may also lead to dropped connections (if the multiplicity upper bound is decreased).

Dynamic Connections for Non-Wired Ports
Contrary to wired ports, which are connected automatically when capsule instances are cre-
ated based on the static connector structure, non-wired ports are programmatically connected 
(and disconnected) at run-time by the use of services provided by the RT services library. One
common usage of non-wired ports are for modeling client/server designs, where a shared ser-
vice provided by a server is accessed by a number of clients. The server is referred to as the 
publisher, and the clients are referred to as subscribers.

A non-wired port on a subscriber is called a Service Access Point (SAP). The multiplicity of 
such a port is no more than 1. A non-wired port on a publisher is called a Service Provision 
Point (SPP). The multiplicity of such a port determines the maximum number of SAPs which 
can connect to the SPP, and is therefore typically greater than 1. An SAP port can only be con-
nected with an SPP port, and vice versa.

Each SPP is uniquely identified by a name (known as the service name), which describes the 
service provided by the container capsule through that particular port. The SAPs are con-
nected to SPPs using this name. This is accomplished by means of a name server that is avail-
able in the RT services library. SPPs register themselves with the name server under their 
unique service name. SAPs perform a lookup to find an SPP with a matching name. If a 
matching SPP is found, a connection is established. However, if no matching SPP is found the
connection request is queued until an SPP with that name appears. This scheme allows for es-
tablishing connections without depending on the order in which the server and client capsules 
are incarnated.

Except for the situation when an SPP with the requested service name is not (yet) available, 
there is the case when the SPP is available, but is already connected to its maximum number 
of SAPs (as specified by its port multiplicity upper bound). Also in this case the connection 
request will be queued. If, at a later point in time, one of the already connected SAPs discon-
nect from the SPP, one of the pending connection requests can be processed to connect a wait-
ing SAP. Another thing that can happen is that the port multiplicity of the SPP is dynamically 
increased, which gives room for more SAPs to connect.

Each connection request made by an SAP can provide a string which describes the connec-
tion. This string is appended to the service name to create a registration string. It has the fol-
lowing format:
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<service name>:<connection string>

The service name string is case sensitive, while the connection string is interpreted by the ser-
vice and hence may have any format.

Note that connections of non-wired ports always are established by the RT services library. 
The responsibility of the application is only to register the ports, which enables the RT ser-
vices library to perform the connections (immediately, or at some later point in time). In the 
same way, ports can be deregistered, which may lead to that existing connections are removed
by the RT services library. It is allowed for the same port to register itself multiple times using
different service names. In this case, the port will be automatically deregistered for its previ-
ous service name, before it is registered with the new service name.

There are three possible ways in which the registration may occur for a non-wired port (repre-
sented by a property on the port):

 Automatic. This is the default registration kind, and means that the port registers itself
at the time when its containing capsule instance is initialized. The service name used is
the name of the port. 
With this kind of registration the port's Publish property will be used for determining 
if a port is an SPP (Publish set) or an SAP (Publish unset).

 Application. Ports with this registration kind are manually registered using the reg-
isterSPP() and registerSAP() functions, which are available on non-wired ports. 
These functions take the registration string as their argument.
For example:
sppPort.registerSPP("myService:/x/y/z");
sapPort.registerSAP("myService:/x/y/z");

With this kind of registration you don't need to set the Publish property since the 
above function calls are what decides whether a port becomes an SPP or an SAP.

 Automatic (locked). With this registration kind the port is registered just like with au-
tomatic registration. But in addition the registration is "locked" meaning that any later 
attempt to deregister the port (or register it under a different name) will fail.

For both kinds of automatic registration it is possible to specify a different name to register 
than the port name. The property used for this is called Registration Override.

Composite Structure
A simple capsule which only handles a small number of events, may be able to handle all 
these events using a single state machine. However, when new ports are added (or new events 
in protocols typing existing ports), the capsule interface grows and the state machine has to 
grow with it, since there will be more events for it to handle. Eventually a point is reached 
where it will not be practical for a capsule to handle any more events in its own state machine,
because it has grown too large or complex. If not before, this is the time to define a composite
structure for the capsule.

The composite structure of a capsule is edited using a composite structure diagram. It shows 
capsule parts and ports and how these are connected by means of connectors. There are three 
kinds of ports that can be shown:
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1. Service ports of the capsule. These ports constitute the external interface of the cap-
sule. They appear on the frame of the composite structure diagram, to illustrate that 
they are facing the environment of the capsule.

2. Behavior ports of the capsule. Messages that arrive at behavior ports will be handled 
by the state machine of the capsule. And messages that are sent by a state machine to 
its composite structure are sent out through behavior ports.

3. Ports defined in capsules that are typing the capsule parts. These ports are shown on 
the border of the part symbols. They are also service ports since they are part of the 
interface of the capsules that type the capsule parts.

There are two kinds of connectors shown in a composite structure diagram:
1. Delegation connectors. These connectors delegate the responsibility of a service port 

to a port on a capsule part. All messages that arrive on the service port will be routed 
to the port at the other end of the delegation connector. And the same is true for the op-
posite direction; all messages that arrive on the capsule part's port will be routed to the
service port. 

2. Assembly connectors. These are all other connectors. They show which capsule parts 
that communicate, either with other capsule parts or with the capsule itself through its 
behavior ports. In some sense these connectors "assemble" the complete functionality 
of the capsule, hence the name assembly connector.

By using delegation connectors and capsule parts, a complex capsule can be decomposed, so 
that some parts of its responsibility are delegated to one or many capsule parts. These parts 
may decide to handle incoming events themselves, or they may in turn delegate them further 
to capsule parts of their own composite structure. 

Here is an example of a composite structure for a capsule:

We see that this capsule has one service port "ext" which is shown on the diagram frame. A 
delegation connector connects this port with a port "test" that is defined in the capsule 
"Adder" that types the capsule part "adder". The diagram also shows two assembly connec-
tors. One of them connects the "request_port" with "computer", which is a behavior port de-
fined on the "PiComputer" capsule itself. The other assembly connector provides a means for 
the "adder" to communicate with the "multiplier" through the "mul" and "result" ports.

26



Since events is the only (recommended) means for communicating with capsule instances, a 
composite diagram provides a useful view over possible communication paths at a particular 
level of abstraction. However, if non-wired ports are used there may be additional connections
dynamically established at run-time.

Operation
Operations of a class may contain a body consisting of action code that will be executed when
the operation is invoked. Such a body is called an OpaqueBehavior in UML. The separation 
of the operation signature from the operation implementation into two separate model ele-
ments should be familiar for a C++ programmer, since C++ uses the same separation of func-
tion declarations and implementation.

Operations may have parameters which provide a means for passing data to its implementa-
tion body. By default a parameter has "In" direction which means it can only convey data 
from the caller of the operation to the implementation of the operation. UML allows you to 
specify also In/Out or Out parameters as a means to convey data also in the other direction, 
from the implementation to the caller. However, in an RT model these directions have no im-
pact on generated code, although you can still use them as a kind of documentation. Instead 
you have to use mechanisms from the action language to achieve the same thing. For exam-
ple, in C++ you can use a reference parameter (&) to be able to assign a value to the parame-
ter which can be obtained by the caller. 

An operation may also have a single Return parameter, which specifies the type of the value 
to which a call of the operation will evaluate. If there is no Return parameter, or the Return 
parameter is typed by "void", then the operation cannot be called in contexts where a value is 
required, such as the right-hand side of an assignment.

Operations may be marked as Pure Virtual. Such operations express that concrete subclasses 
must provide an overriding implementation for them. However, note that a pure virtual opera-
tion may still have an implementation, just like any other operation. An overriding operation 
may call this inherited implementation if necessary.

All operations in an interface are implicitly pure virtual. A class (or capsule) that contains at 
least one pure virtual operation is in effect an abstract class, i.e. an instance of such a class 
cannot be created. In the Project Explorer and diagrams pure virtual operations are shown in 
italics and with the text "= 0" appended after its signature. Abstract classes are also shown in 
italics.

By default an operation is treated as non-virtual in C++. To make it virtual you must set the 
property Virtual. For C++ RT models this property must be used in order to get polymorphic 
behavior when invoking operations. An operation that redefines a virtual operation in a sub-
class should be marked as Override. You can also express that an operation cannot be rede-
fined in subclasses by setting the Final property.
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If an operation is not supposed to modify any of the attributes of its object, it should be speci-
fied to be a Const operation. This corresponds to a "const" member function in C++.

An operation that can be called in constant expressions (i.e. expressions which the compiler 
can evaluate at compile time) should be specified as ConstExpr. This corresponds to a "cons-
texpr" member function in C++.

Operations can be specified to be Static, which means that their implementations do not need 
an object. Static operations can thus not access any non-static attributes, or invoke any non-
static operations.

An operation for which the Inline property is set will be translated to an inline function in C+
+. The body of an inline function will be generated into the header file instead of the imple-
mentation file. This property is therefore often needed to be set for template operations, since 
most compilers require that bodies of such functions are generated in the header file.

A special kind of operations are the trigger operations which are used for triggering transitions
of a passive class state machine. See State Machine in Passive Class for more information.

An operation can have template parameters which can type one or many of its parameters. 
Such template parameters can be useful to make an operation implementation more generic, 
for the same reasons as mentioned in Template Classes.

Constructor and Destructor
For a C++ RT model it is important to be able to specify constructors and a destructor for a 
class. These are represented in the model as regular operations but with certain constraints 
(the same as in C++):

 A constructor has the same name as the container class. It should not have a return pa-
rameter.

 A destructor has the same name as the container class but with a '~' prefix.

Note that the use of the '~' prefix is ambiguous with the UML syntax where '~' is used for 
specifying package visibility (something that is not used in an RT model). To handle this am-
biguity it is important that you specify the '~' as part of the name when editing an operation 
signature.

Wrong! This creates an operation 'foo' with package vis-
ibility.

Correct! This creates a destructor 'foo' with public visi-
bility.

Thrown Exceptions
An operation may specify a list of exception types which its implementation can throw. UML 
uses a property called "RaisedExceptions" for this, which is edited using the tab "Exceptions" 
in the Properties view. However, this property is not supported by Model RealTime when gen-
erating target code from the model. Instead you specify exception types for an operation using
operation parameters for which the property "Is Exception" is set to true. You also need to set 
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the property "Declare Exceptions" on the operation to true. This property is found in the "C++
General" tab. Here is an example:

The types of the exception parameters are the exception types which the operation will throw. 
The above operation is translated by the C++ code generator to the following operation:

void foo( void ) throw( int * );

Event
An event specifies communication between capsules. The communication is based on mes-
sages that are sent from one capsule instance to another. You can think of an event as the spec-
ification of certain kinds of messages, just like a class is the specification of certain kinds of 
instances. So while an event is a design-time concept, a message is the corresponding run-
time concept. 

We often say that events are sent and received. However, what we really mean by sending an 
event is that a message is created for the event, and then that message is what gets sent. In the 
same way receiving an event really means that we receive a message for the event. 

Events belong to a protocol which groups together all messages that may arrive at (in-events) 
or leave (out-events) a port that is typed by that protocol. In the RT model an in-event is 
stereotyped by the «InEvent» stereotype and an out-event is sterotyped by the «OutEvent» 
stereotype.

Just like when calling operations, it is possible to pass data with a message by defining param-
eters for its event. However, while an operation can have any number of parameters, an event 
may at most have one parameter. This means that in order to convey multiple data values with
a message, you have to type the event parameter with a data class (which can have multiple 
attributes holding the data values).

Note that Model RealTime actually allows you to use multiple event parameters in the model, 
although only one event parameter is supported when transforming the model to target code. 
The use of multiple event parameters is only supported for specification models.

To send an event you have to specify
1. the port through which to send the message that is created for the event. This is a be-

havior port on the sending capsule, and the type of that port has to be a protocol which
specifies the event to be sent as an out-event (or an in-event in case the port is conju-
gated).

2. the data to send with the message, in case the event has a parameter. 

Here is an example of C++ code that sends an event "getIncrement" to the port "mul". The 
message will carry the integer value 4 as its data.
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mul.getIncrement(4).send();

It is important to note that when data is sent with a message, the RT services library will make
a copy of the data. The reason is to avoid that the sender capsule instance accidentally ac-
cesses a data object that has been sent to a receive capsule instance, which may run in a differ-
ent physical thread. If the event parameter data object contains pointers you have to be careful
in implementing an appropriate constructor, copy constructor and destructor to ensure that the 
object is handled in a thread-safe way when being copied. Using data classes with pointers to 
data that is shared between different capsule instances may increase performance, but also re-
quires great caution to ensure thread-safe access to such data.

Priorities
A message that is sent to a capsule instance cannot always be dispatched immediately by the 
RT services library. The capsule instance may be busy executing a transition, which must run 
to completion before another message gets dispatched to it. The RT services library therefore 
maintains a queue of messages which are waiting to be dispatched. By default messages are 
ordered in this queue according to their time of arrival, so that the first message that was 
placed in the queue also is the first message to be dispatched. Note that in a real-time applica-
tion there is no guarantee that messages arrive to a destination capsule instance in the same 
order as they were sent. Messages can hence only be ordered based on when they actually ar-
rived to the receiver capsule instance.

It is possible to send a message with a non-default priority in order to tell the RT services li-
brary to order it in the message queue differently upon arrival. A message with a higher prior-
ity will be placed before a message with a lower priority. The following priority levels may be
used:

 Panic. This is the highest possible priority for user-defined messages. Use this only to 
handle emergencies.

 High. This is a higher than normal priority to be used for high-priority messages.
 General. This is the default priority level which is suitable for most messages.
 Low. This is a lower than normal priority to be used for low-priority messages.
 Background. This is the lowest possible priority. Use this to handle background-type 

of activities.

In addition to these five priority levels, there are two system-level priorities which are higher 
than all the above; System and Synchronous. These are used internally by the RT services li-
brary, and cannot be used when sending user-defined messages.

Extensive use of message priorities in a real-time application may be an indication of a design
problem. It is recommended to stick to the default priority level as much as possible, or at 
least avoid using the high and low extremes to save room for future design changes.

The rtBound and rtUnbound Events
The RT service library defines two special events which implicitly are available in any user-
defined protocol:

 rtBound
 rtUnbound
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Messages for these events are sent by the RT services library to notify a capsule instance that 
one of its ports has become bound to or unbound from another port. rtBound is sent to a port 
at System priority when that port gets connected (i.e. bound to another remote port). This is 
useful information for the capsule since it then knows it can start sending events through that 
port. rtUnbound is sent to a port at Background priority when that port gets disconnected (i.e. 
unbound). The capsule should stop sending events on the port once rtUnbound has been re-
ceived.

If the Notification property of a port is set to false, the RT services library will not send these 
notification events to the port.

State Machine
State machines are used for specifying the behavior of classes. Both passive classes and cap-
sule classes may have a state machine. In addition it is also possible to add a state machine to 
a protocol, but such a state machine does not specify any behavior, but rather serves as a kind 
of documentation for the protocol. See Protocol State Machines and Interactions for more in-
formation about protocol state machines.

In this chapter we will focus on state machines in capsules. The use of state machines in pas-
sive classes is described in State Machine in Passive Class.

A state machine consists of states, pseudo states and transitions. During the lifetime of a 
capsule instance its state machine will transition between the various states, as a consequence 
of messages that arrive on the behavior ports. When transitioning between states one or sev-
eral snippets of action code may execute. Such code may for example send messages to other 
capsule instances. 

The first thing that happens after a capsule instance has been instantiated is that the initial 
transition executes. This is the transition that originates at the initial pseudo state. Every state
machine has exactly one initial pseudo state.

When the initial transition has run to completion (i.e. when the code in its effect, if any, has 
executed) the state machine enters the state to which the initial transition is connected. When 
a state is entered, another piece of code may execute; the code that is the entry behavior of 
the state. The presence of an entry behavior on a state is shown by means of an icon on the 
state in the state machine diagram. If you rest the cursor over that icon you will see the code 
in a pop-up. You can also view and edit the code using the Code View or the Code Editor.
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Sometimes it’s useful to execute a common entry behavior whenever any state in the state ma-
chine is entered. For example, you may want to run some tracing code which prints the name 
of the entered state. For this purpose you can use a capsule-scoped state entry operation called
“rtgStateEntry”. This operation should be virtual and have the following signature:

rtgStateEntry ( ) : void

If defined, this operation will be invoked just after a state is entered, before the entry behavior
of the state executes. Hence, the complete entry behavior for a state consists of the “rtgSta-
teEntry” operation plus any entry behavior defined on the state itself.

Until a message arrives at one of the behavior ports of the capsule, the state machine will re-
main in its current state. During this time it does not perform any actions.
When a message arrives, one of the outgoing transitions from the current state may be trig-
gered. If this happens, the code in the exit behavior of the state will execute, followed by the 
code in the effect of the transition. Finally, the state to which the transition leads will be en-
tered (which will cause its entry behavior code to execute). During the entire process of tran-
sitioning from one state to another, the state machine will not be interrupted even if a message
with a higher priority arrives at a behavior port. This principle is known as run-to-comple-
tion and is important to guarantee the integrity of the real-time application. However, the 
principle also means that the code that runs while transitioning between states (i.e. the exit be-
havior of the from-state, the transition effect and the entry behavior of the to-state) should not 
take too long time, because during this time no other message can be processed in any of the 
capsule instances that are run by the same physical thread. To ensure good responsiveness of 
the application, transition-triggered code should therefore only perform quick tasks. If long-
running tasks have to be performed, they should be handled by a separate capsule running in a
different physical thread.

A state may have multiple outgoing transitions, and each transition may have multiple trig-
gers. Each trigger specifies the following:

 The behavior ports on which a triggering message may arrive.
 The event of the message that triggers the transition. This event is defined in the proto-

col that types the specified port, and should be an in-event (unless that port is conju-
gated, in which case it should be an out-event). It is possible to specify that all in-
events in the protocol shall trigger the transition. This is done by using the event nota-
tion '*' (called AnyReceiveEvent in UML). Here is an example what the dialog that 
lets you specify the trigger events may look like:
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 A guard condition. This is a boolean expression, written in action code, which must 
evaluate to true for the trigger to be able to trigger the transition. It is optional to spec-
ify a guard condition, and a missing guard condition is equivalent to a guard condition 
that evaluates to true.

Triggers can be shown in state chart diagrams in the text label of transitions, but are usually 
filtered out3 to avoid cluttering the diagram with too many details. Instead triggers are viewed 
and edited using the Properties view when a transition is selected. Here is an example:

The actual code for the trigger guard condition is viewed and edited using the Code View (or 
the Code Editor if more space is needed). In the example above the literals RTTrue and RT-
False from the RT Services Library are used, but you can also use the C++ boolean literals 
true and false. Note that the guard condition has to be returned using a return statement (i.e. it 
is not sufficient to just type the boolean expression).

It is also possible to specify a common guard condition for all triggers of a transition, by 
putting the guard condition on the transition itself. If there is a guard condition both on the 
transition and on the trigger, both these conditions must be fulfilled for the trigger to be able 
to trigger the transition.

A transition which has a trigger for an event that was received on the port specified by the 
trigger, and where both the guard condition of the trigger and the transition is fulfilled, is said 
to be enabled. This means that the received message may trigger it. However, as we will see 
with hierarchical state machines, there may be more than one enabled transition for a particu-
lar received message. The rules for which enabled transition to actually trigger are specified in
Hierarchical State Machine.

3 The preference for filtering the triggers is called "Show Transition Events" and is located on the RealTime De-
velopment - Diagrams - State Chart preference page.
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The transitioning from one state to another may involve more than one transition. In general, a
whole chain of transitions may execute, where the first transition in this chain has the trigger 
that matched the received message. Such a chain of transitions is in UML called a compound 
transition. All transitions in the chain except the first one originate at pseudo states, and may 
not have any triggers. The following kinds of pseudo states are supported in an RT model:

1. Initial pseudo state. Specifies the starting point for the state machine as already de-
scribed above.

2. Choice pseudo state. Specifies a point in the state machine where a dynamic choice is
made to decide which outgoing transition to execute next in the compound transition. 
A choice pseudo state has two or many outgoing transitions, each with a guard condi-
tion. The first transition whose guard condition evaluates to true will be taken. It is 
recommended to ensure that the guard conditions are mutually exclusive, so that the 
order in which they are evaluated will not be significant. One of the guard conditions 
may be set to "else" to denote that its transition will execute in case the other transi-
tions will not. For example:

Note again that a guard condition other than 'else' should be written as a C++ return 
statement which returns the result of evaluating the boolean condition.

3. Junction pseudo state. Specifies a point in the state machine where multiple transi-
tions converge. Junction points are useful in order to execute a common transition, in 
response to different events. For example:

Here, transitions "t1" and "t2" may specify triggers for different events, and transition 
"t3" may contain a common effect code that will be run when a message for either of 
these events arrive. Another way of achieving the same thing would be to put the com-
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mon code in an operation, which then is called from the effects of both "t1" and "t2".

4. Entry point, exit point and history pseudo state. These are used in hierarchical state 
machines, and are described in Hierarchical State Machine.

A transition which has the same source and target state is called a self-transition. 

There are two kinds of self-transitions:
1. External self-transition. This is the default and means that the state will be exited be-

fore the transition is triggered, and then entered again afterwards. Thus, both the exit 
and entry behavior of the state will be executed.

2. Internal self-transition (or just internal transition since all internal transitions are self-
transitions). In this case neither the entry nor the exit behavior of the state will execute
when the transition is triggered. A state that has at least one internal transition is 
marked with a special icon in its upper right corner:

Internal transitions can be shown in a special compartment of the state symbol. To en-
able this compartment select the state symbol and go to the Appearance tab in the 
Properties view. From there you can make the internal transition compartment visible:

A faster way to toggle the visibility of this compartment is to double-click on the up-
per right icon. Here is the above state symbol with its internal transition compartment 
made visible:

If a state does not have an entry behavior, nor an exit behavior, and it does not contain sub 
states with entry or exit behaviors, then an external self-transition for such a state is equiva-
lent with an internal transition. When you have this choice it is recommended to model such a
transition using an internal rather than an external transition, because it leads to diagrams with
fewer lines which both look better and are easier to work with. Also, generated C++ code 
tends to be more efficient for internal transitions since function calls corresponding to entry or
exit behavior invocations can be omitted.

In addition to internal and external self-transitions, there are local self-transitions which can 
be used in hierarchical state machines to specify that sub states should be entered and exited, 
but the source state should not.
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Hierarchical State Machine
As a state machine grows larger it becomes important to be able to decompose states using 
sub state machines. States which contain a sub state machine are called composite states, and 
a state machine with composite states is a hierarchical state machine.

A composite state is denoted in the state machine diagram using a special icon in its bottom 
right corner:

You can double-click on a state symbol to open its sub state machine (or create one, if it does 
not yet exist). The diagram for the sub state machine looks quite similar to the top-level state 
machine diagram. However, there are some differences:

 Incoming transitions to a composite state are shown on the border of the sub state ma-
chine diagram. They connect to entry point pseudo states of the composite state.

When an incoming transition is triggered the composite state will be entered as usual. 
But then, in addition, the transition which originates at the entry point in the sub state 
machine will execute. This means that the incoming and outgoing transitions of an en-
try point pseudo state are part of the same compound transition. Finally a state in the 
sub state machine will be entered.
If the entry point has no outgoing transition in the sub state machine, the composite 
state is entered with deep history, meaning that the previously active states (and their 
substates) become active again. This is denoted in the state chart diagram by the nota-
tion “H*”:

If no previously active states exist (i.e. it is the first time the composite state is en-
tered), then the initial transition of the sub state machine runs.

 Outgoing transitions from a composite state are also shown on the border of the sub 
state machine diagram, but they instead connect to exit point pseudo states of the 
composite state.
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When a transition that leads to an exit point is triggered in the sub state machine the 
composite state will first be exited as usual. Then, in addition, the transition which 
originates at the exit point in the enclosing state machine will execute. This means that
the incoming and outgoing transitions of an exit point pseudo state are part of the same
compound transition. Finally, a state in the enclosing state machine will be entered.

 It is not mandatory to enter a composite state through an entry point, or to exit it 
through an exit point. The transitions can terminate directly at the state, without using 
entry/exit points. Consider the following example:

If transition "t1" triggers, it will lead to execution of transition "initial_2" since it en-
ters the state using the entry point. However, if transition "t2" triggers, the state will be
entered without using an entry point. In this case the initial transition "initial_1" from 
the initial pseudo state will execute. However, as mentioned above this is only true the
first time the state is entered. The next time, entering a state without using an entry 
point means the same as entering it through an entry point that has no outgoing transi-
tion in the sub state machine (i.e. to enter it using “deep history”). It is recommended 
to always enter a composite state using entry points since it makes it more clear what 
will happen.

 If the composite state has local or internal self-transitions these can be shown on the 
border of the sub state machine diagram. Here is an example:

A local self-transition will not trigger the entry or exit behavior of the composite 
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source state, but the transition applies also to all contained sub states and these will be 
entered and exited as usual. If there are no sub states with entry or exit behaviors a lo-
cal self-transition can be converted to an internal transition on the composite state 
without changing the meaning of the model. Doing this may lead to a simpler diagram 
that is easier both to view and edit.
When an internal transition is shown on the border of a sub state machine diagram, a 
dashed transition line is used. This is an RT extension to the standard UML notation.
Note also that Model RealTime allows you to show internal transitions in a separate 
compartment below or besides the state machine diagram. This makes the diagram 
more readable and easier to work with. The following two diagrams are hence equiva-

lent:  

When a state in a sub state machine is active, then all enclosing composite states are also ac-
tive. This means that instead of thinking about a state machine as only having one active state,
we should think of it as a list of active states. This list is known as the active state configura-
tion of the state machine. However, in each individual state machine in the hierarchy, there is 
at most one state active at any point in time.

As an example consider the following state machine hierarchy (where each sub state machine 
is shown inline in the enclosing composite state symbol):

When this state machine starts to run all three states A, B and C will be entered (in that partic-
ular order). So the active state configuration will be {A, B, C}. In fact it is not possible for 
state C to be active without also state B and A being active since these are enclosing compos-
ite states. In the active state configuration {A, B, C} the transition "t1" may become triggered.
This means the active state configuration changes to {AA}, that is the non-composite state 
AA will be the only active state. Before the effect of "t1" executes, all the states in the active 
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state configuration must be exited, i.e. the exit behavior of C, B and A will run (in that partic-
ular order).

With a hierarchical state machine the rules for determining which transitions that can be trig-
gered in a certain active state configuration become slightly more complex, since transitions 
of enclosing active states also need to be taken into account. The following algorithm is used 
for selecting which transition to trigger when dispatching a received message:

1. The search for a matching transition starts in the innermost active state. Within the 
scope of this state, outgoing transitions (both external, internal and local) are evaluated
sequentially. If an enabled transition is found, the search terminates and that transition 
is triggered. If multiple enabled transitions are found, the first one will be triggered.

2. If no transition is enabled in the current state machine scope, the search is repeated for 
the next higher scope, one level up in the state machine hierarchy. That is, transitions 
that leave the enclosing composite state will now be searched.

3. If no enabled transitions have been found when the top-level state (i.e. a state defined 
directly in the capsule state machine) is reached, and none of its outgoing transitions 
are enabled, then the current message is discarded. If this happens no code will run as 
the effect of dispatching this message, and the active state configuration will remain 
unchanged. This is often, but not always, an indication of a problem in the design of 
the application.

If an enabled transition is found, the following happens:

1. If the enabled transition is not an internal transition, then the exit behavior of all active
states are executed, starting with the deepest nested state up to the state from which 
the enabled transition originates. If the enabled transition is an internal transition, then 
no exit or entry behaviors are executed. If the enabled transition is a local transition, 
then exit and entry behaviors execute for all nested states, but not for the state from 
which the enabled transition originates.

2. The enabled transition is executed. This includes execution of all the transition seg-
ments of the transition chain (compound transition) which starts by the enabled trans-
ition. The effects of all these transitions execute sequentially. Note that some of the 
transitions in the chain may cause states to be entered or exited, which means that state
entry and exit behaviors may execute. Finally, when all transitions in the chain have 
been executed, a state is reached. This state is entered to become the active state in the 
state machine where it is located.

Over time as a state machine executes, its active state configuration is continuously changed. 
Sometimes there is a need to express that a transition should lead back to an identical active 
state configuration, even if the transition is external. A convenient way of achieving this is to 
use the history pseudo state. 
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There can be at most one history pseudo state in a state machine, and it is only allowed in sub 
state machines. When a transition terminates at the history pseudo state, the source state will 
again become active. Also, if the source state is a composite state, all its sub states (direct or 
indirect) which previously were active will become active again. Hence, the history is a "deep
history" which restores the entire active state configuration, not just the source state itself.

To see how a history pseudo state can be used let's return to our previous example above. 
When we are in the active state configuration {A, B, C} and the transition "t2" is triggered, 
we see that there is a transition that terminates at the history pseudo state. Hence, after this 
transition has been triggered the active state configuration is still {A, B, C}. If the states in the
active state configuration has entry behaviors, these are executed as usual when entering the 
states by means of the history pseudo state.

In most of the screen shots above we have used separate state chart diagrams for describing a 
sub state machine. This is the most common case since a separate diagram usually is needed 
for fitting the sub state machine. However, as we have seen in the recent example, if the sub 
state machine is sufficiently small it can be an alternative to show it inline inside the compos-
ite state symbol. To do this you have to configure the state symbol to show the Region com-
partment. Here is an example:

This visualization can have some benefits since it becomes easier to follow transition paths 
through entry and exit points on the composite state. Which visualization that is chosen has no
semantic significance on the execution of the state machine.
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Deferring and Recalling Messages
Sometimes a state machine may be designed to process a certain number of different mes-
sages sequentially. If, during the processing of such a message sequence, another message 
happens to arrive, it is often useful to defer the processing of that message until remaining 
messages in the sequence have arrived, especially if the message that arrived is the start of an-
other message sequence. Processing multiple message sequences with interleaved parallelism 
can be tricky to implement.

To defer a received message call its defer() function. Note that this call has to take place in 
the code that is triggered by the message, i.e. when the received message already has been dis-
patched by the RT services library. A deferred message is saved in a defer queue which is 
maintained by the RT services library. It will remain there until it is explicitly recalled, which 
is done by calling a recall() function. A deferred message that is recalled is moved from the
defer queue back into the message queue, so that it can be dispatched again at a later point in 
time. By default the recalled message is placed at the back of the message queue, just like any
other message that arrives. However, it is also possible to recall it to the front of the message 
queue so that it will be the next message to be dispatched.

The picture below illustrates the message queue and the defer queue and how messages can be
moved between these queues:

Note that there is no time limit on how long a message can stay in the defer queue, and you 
must make sure you don't forget any message in the defer queue.

Deferring messages inevitably makes the state machine design more complex, and it can be 
easy to forget to recall messages where so is necessary. Therefore it is recommended to use 
message deferral sparingly.

State Machine in Passive Class
It is possible to use a state machine to define the behavior of a passive class. This can be use-
ful as a light-weight alternative to capsule state machines. However, although a passive class 
state machine looks almost identical to a capsule state machine there are several differences. 

An important difference is that a passive class state machine always executes in the logical 
thread of a capsule. This is because a passive class does not have its own logical thread.
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Another difference is that a passive class may not have ports, which means that transitions in 
a passive class state machine cannot trigger on the reception of messages. Instead, the transi-
tions are triggered by calling operations defined on the passive class. These operations are 
known as trigger operations. A trigger operation may have input parameters which allow 
data to be passed to the transition code, but no return parameter is allowed. Hence, to pass 
data from a transition back to the caller you have to use mechanisms such as C++ reference 
parameters. 

In the RT model a trigger operation looks like this:

A trigger operation runs synchronously and will hence block the caller until the triggered tran-
sition has run to completion.

A trigger operation does not have its own body with code. If you select a trigger operation the 
Code View will not allow you to edit its body.

Just like the same protocol event can trigger multiple transitions in a capsule state machine, 
the same trigger operation can trigger multiple transitions in a passive class state machine.

Another consequence of the absence of ports on passive classes is that events cannot be sent 
directly from code in a passive class state machine. However, by passing a reference to a cap-
sule instance as an argument when calling a trigger operation, the transition code can invoke 
operations on the capsule which in turn may send events through its ports as usual. The cap-
sule instance that is used should of course belong to the same logical thread as runs the pas-
sive class, to avoid concurrency problems. The same technique can be used to access services 
from the RT services library from passive class state machines. The service ports are defined 
on the capsule as usual, and are made available to a passive class state machine by means of 
capsule operations.

If you want to pass a reference to a capsule instance to a passive class, it's recommended to let
the capsule implement an interface which exposes only the operations that the passive class 
needs to call. Thereby you can define more clearly what functionality the capsule exposes to 
its passive classes, and you avoid to accidentally use other parts of the capsule implementa-
tion.

In a passive class state machine it is possible to use the Final state. 

This kind of state is not supported for capsule state machines. However, if used the Final state
will act very much like a regular state without outgoing transitions. In particular it will not au-
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tomatically cause the passive class instance to be destroyed (which is the normal UML seman-
tics of a Final state). Usually it is better to let the capsule that is responsible for the passive 
class both create and destroy its instances.

Just like for a capsule state machine a passive class state machine may be hierarchical, and 
use entry/exit points. However, while a capsule state machine only supports the deep history 
pseudo state, a passive class state machine also supports the shallow history pseudo state. 

With shallow history the previously active state will become active again, but only in the state
machine that contains the history pseudo state, not in sub state machines of the activated state.

By default the initial transition of a passive class state machine executes at the time of con-
structing the passive class instance. This happens because the generated default constructor 
contains a call to an operation rtg_init1() which contains the code from the initial transi-
tion. If you create your own constructors you must therefore include a call to this operation 
manually to ensure that the state machine is initialized before any trigger operations are 
called. 

Contrary to capsule state machines, a passive class state machine cannot be inherited.

Artifact

Sometimes you may want to include C++ declarations in a model that are not appropriate to 
generate from UML elements. There may not be an appropriate UML element that corre-
sponds to the code you like to include, or you may already have a piece of C++ code that you 
want to reuse in your model. In these cases you can use an artifact model element as the con-
tainer for the C++ code. An artifact represents a pair of C++ source files (header and imple-
mentation file), and is therefore sometimes also called a file artifact. 

An artifact has two code snippets; one Header snippet for code that should be generated into 
the header file, and an Implementation snippet for code that should be generated into the im-
plementation file. Use the Code view or Code editor to edit these code snippets, in the same 
way as you edit all other code snippets in Model RealTime. The C++ code you place in an ar-
tifact will be printed verbatim into generated C++.

The main benefit with using an artifact for representing C++ code in the model, is that the 
model contains everything that is needed for generating your application. You can create de-
pendencies from other elements to artifacts to represent includes or forward declarations, and 
an artifact can also have similar dependencies in case the C++ code needs to reference ele-
ments from the model. Model RealTime also supports other ways of integrating C++ code 
with a model (for example external C++ library transformation configurations), but use of ar-
tifacts is recommended especially when the code needs to reference elements from the model.
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Transformation Constraints
An RT model can be transformed by Model RealTime into target application code, such as C+
+. For the transformation to be successful the model has to comply with the RT subset of 
UML, as described above. However, there are also some additional constraints that must be 
met, to ensure that generated code is well-formed. These constraints are described in this 
chapter.

Names
In general the RT transformations use the names of model elements in generated code, with-
out any changes. The benefit with this approach is that it becomes easier to write the action 
code snippets in the model that use the names of model elements. However it also means that 
you have to ensure that names are well chosen so the generated code will compile. The name 
of a UML element must not

1. be a reserved word in the target language (for example 'switch' or 'for' in C++)
2. conflict with a name used by the RT services library (this may depend on the context 

in which the code snippet is located, but as a rule you should never use the prefix “rtg”
for names of model elements since this prefix is often used for definitions in the RT 
services library)

3. conflict with a name used in external code (for example a C++ header file that is in-
cluded)

The first rule is checked by the transformation. Here is an example:

16:46:51 : ERROR : CPPModel::inline::inline : Protocol with illegal name not 
generated.
16:46:51 : ERROR : CPPModel::inline::inline : This element does not have a legal 
C++ name: it will not be generated.

Violations of the second and third rule will not be detected until the generated code is com-
piled. Here is an example:

../Base.h:10:8: error: 'Base::Base' has the same name as the class in which it is 
declared

Also note that the RT transformations do not support scoping of names by using UML pack-
ages. It may therefore be a good idea to use a prefix for elements that are defined in a pack-
age, to avoid name conflicts with elements defined in another package.
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The UML-RT Profile and Libraries
An RT model has the UML-RT ("UMLRealTime") profile applied. It is best to create an RT 
model using one of the UML Capsule Development templates in the New Model Wizard, for 
example UML Capsule C++ Development Model. Then the UML-RT profile will be automat-
ically applied from the beginning. You can check this from the Profiles tab of the Properties 
view, with the top-level package selected:

The UML-RT profile contains a number of stereotypes which are used for representing RT 
specific concepts such as Capsule and Protocol. These stereotypes are applied automatically 
by Model RealTime when needed, and there is therefore no need to work with the UML-RT 
profile manually. You only have to be aware of its existence, and make sure never to remove 
the profile application as this will cause all applied RT stereotypes to be removed. Beware that
they are not possible to reapply in an easy way, so never remove the UML-RT profile applica-
tion.

An RT model also imports a few model libraries. Exactly which libraries that are imported de-
pends on the action language used, but for a model that uses C++ code the following libraries 
are imported:

CppPrimitiveDatatypes
The CppPrimitiveDatatypes library contains UML representations of the primitive C++ data 
types. For example you will find the data types "bool" and "wchar_t" there. A "void" type is 
also available to be able to explicitly specify that an operation does not return a value. Type 
specifiers like pointer (*) or reference (&) are not represented in UML but can nevertheless be
used directly where type references are used. For example:
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Also note that type completion (Ctrl+Space) is available in most places where C++ types can 
be referenced, so you don't have to browse to the C++ predefined types each time you need to 
use them. Type completion can only provide completion for types defined in the model 
(which includes the primitive C++ types thanks to CppPrimitiveDatatypes), but not types ex-
ternal to the model such as C++ classes defined in external header files.

RTClasses
The RTClasses library contains several useful types from the RT services library. There are 
therefore different versions of this library depending on the target library. When C++ is used 
the following types are made available for use in the UML model:

RTActorId, RTBoolean, RTByteBlock, RTCharacter, RTDataObject, RTEnumerated,
RTInteger, RTMessage, RTpchar, RTPointer, RTpvoid, RTReal, RTSequence, RT-
SequenceOf, RTString, RTTime, RTTimerId, RTTimerspec, RTuchar, RTulong, 
RTushort

Some of these are just typedefs to predefined types, while others represent classes from the 
RT services library. For more information about these types see the documentation of the RT 
services library.

The RTClasses library also contains important protocols which are used as a means to expose 
services from the RT services library to the RT model. The protocols are:

Exception, External, Frame, Log, Timing

See RT Service Protocols for more information about these protocols.

RTComponents
The RTComponents library contains a transformation configuration "RTComponent" which 
represents the external C++ library that contains the implementation of the RT services li-
brary. Most RT transformation configurations therefore have that as an (explicit or implicit) 
prerequisite transformation configuration:
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