
Comparing and Merging Models with

DevOps Model RealTime

Author: Mattias Mohlin
Senior Software Architect

IBM

INTRODUCTION...3

COMPARING MODELS...5

COMPARE FROM LOCAL HISTORY..6
COMPARE FROM FILE SYSTEM...6
COMPARE FROM CM SYSTEM...7

ClearCase..7
Git..8

COMPARE USER INTERFACE..10
Switch Compare Viewer...10
Reorganize Contributors..11
Browse Button...12
Preferences Menu..13
Add Task..13
Save List of Changes...13
Sub Compare Button..14
Next/Previous Buttons...14
Delta Tree Configuration..14
Change List Compartment...18
Contributor Model Compartments..20

SUB COMPARE..22

MERGING MODELS...23

MERGE FROM FILE SYSTEM..24
MERGE FROM CM SYSTEM..24

ClearCase..24
Git..25

MERGE USER INTERFACE...27
Add Task..29
Accept All Non-Conflicting Changes..30
Enable Auto-Advance..30
Accept..30
Reject...30
Accept All Changes from Left..31

1

Accept All Changes from Right...31
Next/First Unresolved Buttons..31
Undo/Redo Buttons..31
Commit Merge Session..31
Cancel Merge Session...32
Save a Copy...33

RESOLVING CONFLICTS..33
Dependent Changes...37

TEXT MERGE...38
Merging Rich-Text Comments...39

STRUCTURAL MERGING BY COMBINING MODELS...40
Manual Mappings..42

EXPLORING THE CONTRIBUTOR MODELS..43

TYPES OF CHANGES...44

ADD CHANGE...44
DELETE CHANGE..44
MODIFY CHANGE..45
MOVE CHANGE..45
FRAGMENT ABSORB CHANGE..46
FRAGMENT SEPARATION CHANGE..46
DIAGRAM VIEW POSITION AND SIZE CHANGE...47
COMPARE/MERGE INDUCED REFERENCE MODIFICATIONS..47
COMPARE/MERGE INDUCED DELETIONS...48

COMPARE/MERGE TASKS...48

LOGICAL MODELS..51

CLOSURES OF MODELS..54
INVOKING LOGICAL MODEL AND CLOSURE COMPARE..55

Invocation from the User Interface (Git)...56
Invocation from the Command Line (Git)...57

INVOKING LOGICAL MODEL AND CLOSURE MERGE...57
Invocation from the User Interface (ClearCase)...58
Invocation from the User Interface (Git)...59
Invocation from the Command-Line (ClearCase)...60
Invocation from the Command-Line (Git)...62

COMPARE/MERGE SERVER...63

COMMAND LINE TOOL FOR COMPARE/MERGE...65

COMMAND-LINE INTEGRATIONS WITH CM TOOLS...71

This document describes how to compare and merge models developed with DevOps Model
RealTime. It explains the Compare/Merge user interface and suggests suitable workflows to
use when resolving various kinds of conflicts that may appear during a model merge.

The document was last updated for Model RealTime 10.2. All screen shots were captured on
the Windows platform.

2

Introduction
Most software projects have a need for parallel development, where features are developed in
parallel by different development teams. Parallel development is made possible by using a
configuration management (CM) system, for example ClearCase, Rational Team Concert or
Git, which allows the work of different teams to be isolated from each other. Different CM
systems use different terminologies, but in this document we will use the term stream to de-
note the area in the CM system where one particular feature can be developed in isolation
from other features. Exactly what constitutes a feature varies between different organizations
and projects, and here we will loosely define a feature as a group of changes performed by a
certain team over a limited period of time.

It is common to have a main stream, or release stream, from which the different feature
streams are branched off. The main stream is where the work of the different feature teams is
put together. Usually the complete software is built, tested and delivered from the main
stream. This means that contrary to a feature stream which is only important to the team that
works on that feature, the main stream is important to everyone in the project. Therefore it is
crucial to keep the main stream in a good and healthy condition at all times. Ideally all code
on the main stream should always build successfully, all integration tests should pass, and the
product that is built from it should always move in a direction where it becomes continuously
better and more feature-rich as time goes by.

The picture below illustrates the main stream (to the right) and a feature stream (to the left)
for a particular model file:

At version M1 the feature stream is created by branching from the main stream. Version M1 is
called the base version or common ancestor version for the feature stream. The feature is
then developed in parallel with all other development activities that take place on other
streams. At version F1 the feature has reached a state where it is ready to be introduced on the
main stream for integration with other features. Before the development team can deliver the
changes from the feature stream to the main stream they have to incorporate all changes that
have arrived on the main stream since version M1. This is a merge activity which is usually
called rebasing since it changes the base version for the feature stream. The result of rebasing
is version F2 on the feature stream and the common ancestor version then becomes M2.
Note that rebasing can be done not only when the feature is ready to be delivered. Especially
if it takes long time to complete the feature it is a good idea to rebase now and then to avoid

3

M1M1
branching off

M2

M3

F2

F1

F3

rebasing

delivering

that the contents of the feature stream deviates too much from the contents on the main
stream. The more different the feature stream becomes from the main stream, the more diffi-
cult will the rebasing be with a higher number of merge conflicts.

Once the rebasing is completed the development team has to ensure that the feature still builds
correctly and that all tests pass. Even if all merge conflicts were successfully resolved, there is
no guarantee that the resulting model will be fully correct. This can only be verified by build-
ing and testing it. Once this has been done, and all found problems have been resolved on the
feature stream, the team may try to deliver the changes to the main stream. However, new
changes may have arrived on the main stream from other development teams since the point
in time when the rebasing was done. If new changes are present on the main stream, another
rebasing has to be done to merge these into the feature stream.

Eventually, the feature will be ready to be delivered and there are no new changes on the main
stream. This is version F3 in the picture above. Now the feature may be delivered to the main
stream (version M3). Note that although this is also a merge activity, it will not lead to any
merge conflicts since all changes on the main stream already exist on the feature stream. Such
a merge is called a trivial merge. All merges to the main stream should be trivial because as
soon as new changes are introduced or there are merge conflicts to resolve during a merge,
complexity rises and there is a higher risk that the model that results from the merge will fail
to build or to pass all test cases. If this happens on a feature stream it is acceptable because it
will only affect the team that works on that feature. But if it happens on the main stream it
will affect all developers which is much worse. A main stream that has build or test failures
means that
• it is not advisable to branch off new feature streams since they won't originate from a sta-

ble version
• rebasing from the main stream to feature streams will introduce those errors also on the

feature streams
• it is not possible to release the product until the problems on the main stream have been

solved

The workflow described above is not at all specific for models - all files that are worked on in
parallel are handled in the same way. For textual files Model RealTime includes a tool (part of
Eclipse) for comparing and merging them. Compared to this text-based compare/merge tool,
the following is worth noticing for the model-based Compare/Merge in Model RealTime:
• Changes and merge conflicts that are reported from models are sometimes harder to un-

derstand than those you get when comparing or merging text files. The reason is that
models often work on a higher abstraction level than text files. Elements in Model Real-
Time are described by a meta model (UML2) which uses a rather technical and abstract
terminology, that in some cases are different from the terminology used when creating RT
models. Descriptions of changes and conflicts may therefore require some experience to
understand.

• Changes and merge conflicts often depend on each other. This is because models are
highly interconnected and must comply with many integrity rules in order to be well-
formed. One consequence of this is that when you resolve a merge conflict, other merge
conflicts may be automatically resolved as well. So a merge of models may initially seem
complex with lots of merge conflicts, but once some are resolved, the situation may look
much better.

4

• Contrary to text, a model element can be presented in a number of different ways. For ex-
ample in a model tree (like the Project Explorer), in a property view, in a code view or in
a diagram. Depending on the kind of change different ways of presenting it may be ap-
propriate. The Compare/Merge user interface therefore has significantly more compart-
ments and buttons than its textual counterpart has.

• When merging models Model RealTime will not allow you to edit the result model di-
rectly. If a conflict cannot be resolved by the commands that are provided by the Com-
pare/Merge tool, you may have to take a note of the affected element's location and return
there after the merge has been completed, in order to manually correct or complete that
part of the merged model. Model RealTime provides a specific user interface, the Com-
pare/Merge Tasks view, which helps you keep track of such post-merge activities.

The rest of this document explains the user interface of the Compare/Merge tool and describes
how to best use it in order to compare and merge models. For the sake of simplicity we will
often refer to the workflow with feature and main streams described above, although the
Compare/Merge tool really is independent of which work flow that is used for parallel devel-
opment.

Scenarios that involve usage of a CM tool are described for both ClearCase and Git. For
ClearCase it is assumed that the ClearTeam Explorer plugin is used for performing CM opera-
tions from within Model RealTime. For Git it is assumed that the EGit plugin, together with
the RSx EGit Integration, is used instead. Both ClearTeam Explorer and EGit integrates with
the Eclipse Team API which gives their user interfaces certain similarities. It should therefore
be relatively easy to understand these chapters even if you are using a different CM system,
with another plugin that integrates with the Eclipse Team API.

Comparing Models
Let's start with looking at how to compare two models (or more accurately, two versions of
the same model). This scenario is simpler than the merge scenario where in addition to these
two models we also have a third common ancestor model for the base version. It is therefore
good to start by learning how to compare two versions of a model.

The two models that are compared are called the contributor models. One of them will be
shown to the left in the Compare user interface, and the other to the right, and the models are
therefore often referred to as the left contributor and the right contributor respectively. The
Compare tool will tell you what changes that are needed in the right contributor to make it be-
come equal with the left contributor. This means that if one of the compared models can be
said to be a newer, or more recent, version of the other compared model, then the left contrib-
utor should be the newer version of the model, and the right contributor should be the older
version of the model. This ensures that you can read the changes that are presented by the
Compare tool and understand what has happened with the model from its older version to its
newer version.

You can trigger a compare of two versions of a model in many different ways in Model Real-
Time. Let's look at some of these possibilities before we describe the Compare user interface.

5

https://wiki.eclipse.org/EGit/User_Guide

Compare from Local History
Model RealTime has a feature to save the history of workspace files that are modified. This
feature can be set-up in the preferences at General - Workspace - Local History. With this fea-
ture enabled Model RealTime will save a copy of each file that gets modified, and thereby
create a history of all changes made to that file. You can look at this history by right-clicking
in the Project Explorer on a model that is stored in its own file, and perform the command
Team - Show Local History.

The version shown in boldface is the current version of the model. If you right-click on a pre-
vious version and perform Get Contents you will create a new version of the model which is a
copy of the selected version. This is useful in case you want to go back to a previous version
of a model, and you have not stored that version in the CM system.

If you do Compare Current with Local Model RealTime will launch the Compare tool to
show the differences between the current version and the selected version of the model. You
can also select two arbitrary versions in the list and do Compare With Each Other to compare
those particular versions of the model.

When you compare models using the local history feature, the left contributor will be the
newest of the two models.

Compare from File System
Comparing files in the local history is a special case of the more general workflow when
model files from your local file system are compared. You can select any two elements in the
Project Explorer that are stored in their own files and invoke Compare With - Each Other in
the context menu. The Compare tool will be launched to show the differences between the se-
lected models. To give a useful result, the selected model files must be versions of the same
model.

You can also invoke the Compare With - Each Other command with three model file elements
selected. In this case one of the model files should be the common ancestor of the other files.
The common ancestor model is the model from which both the two compared model versions
originate. Read more about this in Merging Models. A dialog appears to let you choose which
of the selected model files that is the common ancestor model:

6

A compare that involves a common ancestor version of the model is called a three-way com-
pare. If there is no common ancestor specified the compare is two-way. The Compare tool
can in general do a better job with identifying and presenting the changes that have been made
if a common ancestor model is available. This is usually the case when doing compare on files
stored in a CM system.

You can also compare files in the file system from the command-line using the Command
Line Tool for Compare/Merge.

Compare from CM System
For files that are controlled by a CM system, you can in addition to the local history (which is
stored in the workspace) also look at the history of the file that is stored in the CM system.
From there you can launch the Compare tool on different versions in much the same way as
you can from the local history view. However, in a CM system you can have more than one
parallel stream of development, which means that the history of a file is typically better
shown as a tree rather than a list. Different CM tools provide different history views.

ClearCase
Right-click in the Project Explorer on a model that is stored in its own file, and perform the
command Team - Show History. A view will appear that shows the versions of the file in
ClearCase:

This view shows the versions of the file as a flat list. To instead view the file's version tree,
right click on a file version in the list and do Show Version Tree. Here is an example of a very
simple version tree for a model file "HelloWorld.emx" which is controlled by a ClearCase dy-
namic view:

7

Here we can see that the main stream has two versions of this file (version 0 and 1), and that
the file is currently checked out to allow a third version to be created. To launch the Compare
tool on versions of the model file that is shown in the version tree you can right-click on one
version and perform Compare With Predecessor. The left contributor will then be the selected
version and the right contributor will be the predecessor version. You can also perform Com-
pare With Another Version, and then click on the version you want to compare against. The
version you invoke the command on will be the right contributor model and the version you
click the next time will be the left contributor model. It is therefore important to select the
versions to compare in the correct order, so that you start with the oldest version first. For ex-
ample, if we would like to see what has happened from version 0 to version 1 in the picture
above, we should first select version 0 (right contributor) and then version 1 (left contributor).

You can also launch the Compare tool from the command line. For example, the equivalent of
the above mentioned compare operation would be

cleartool diff -graphical HelloWorld.emx@@\main\0 HelloWorld.emx@@\main\1

Note that also here the first specified version will be the right contributor, and the second
specified version will be the left contributor. See Compare/Merge Server for more information
about how command-line invocation of Compare/Merge works.

Git
Right-click in the Project Explorer on a model that is stored in its own file, and perform the
command Team - Show in History. A view will appear that shows the versions of the file in
Git:

8

The Git history view actually shows the history of commits, and by default when you invoke
it on a particular model file the commit history is filtered to only show the commits that con-
tain changes in that file. You can use the buttons in the view toolbar to widen the scope so that
you can look at the commit history for the parent folder, the containing project or even the en-
tire Git repository.

To view the full version tree, rather than a flat list of commits, click on the toolbar button
Show All Branches and Tags. The History view will then not only show the list of parent com-
mits for the checked out commit, but also commits on other branches:

You can compare any commit with the version of the model you currently have in the
workspace. Right-click on the commit and perform Compare with Workspace. The right con-
tributor will be the selected commit, and the left contributor will be the workspace version.

More variants of this command are available in the Compare With context menu for an ele-
ment in the Project Explorer that is stored in its own file. The commands in that menu can be
used for comparing the model of the selected file with the version of a particular commit,
branch, tag or reference. You can also compare it with the staged version that is currently in
the Git index and with the HEAD revision. Compare Index with HEAD compares the version
of the file that is in the index with the HEAD revision.

9

If you select two commits in the History view you can compare them by performing Compare
with Each Other in the context menu. The right contributor will be the commit that has the
oldest authored date, and the left contributor the one with the newest date.

A compare session can also be launched from the Git Staging view which shows files that are
currently unstaged (locally modified) and staged (added to the index). You can simply double-
click on a file shown in this view to launch a compare session which shows the changes in the
file compared to the HEAD revision.

It is possible to launch the Compare tool from the Git command line. You need to configure
the git difftool to invoke the Command Line Tool for Compare/Merge.

Compare User Interface
The Compare user interface consists of three compartments:

The top compartment shows the list of changes, and the bottom two compartments show the
left and right contributor models respectively. For each change that you select in the change
list, it will be highlighted in both the left and right contributor models, so you can see where
in the model the change was made.

As you can see there are several buttons and menus available in the Compare user interface.
Many of these apply only for merge sessions, and are therefore disabled for a compare ses-
sion. Let's go through the buttons and menus that are enabled for compare sessions:

Switch Compare Viewer

10

Hint: You can double-click the header of a compartment to maximize that compartment and
hide all the others. Double-click the header again to make all compartments visible.

The Compare tool supports comparing many kinds of files, not just UML model files created
in Model RealTime. For each kind of supported file one or many content types may apply.
Each content type corresponds to a particular compare viewer which controls the overall ap-
pearance of the Compare user interface.
The Compare tool uses the file extension of the compared files to find a default content type
to use for the compare session. For example, for model files (.emx, .efx etc.) the default con-
tent type is called "Model RealTime Model Content Type". When this content type is used,
the Compare user interface will consist of the three compartments that were mentioned previ-
ously.

You can use the menu that appears immediately to the right of the text "Structural changes" to
switch to using a different content type and compare viewer. As you can see in the picture
above, the content type "Text" is also available for model files. If you choose this content type
the Compare tool will treat the compared files as plain text files and the Compare user inter-
face will change to just show two compartments, where the models are shown as text files:

Switching to a non-default content type, such as Text, can sometimes help you better under-
stand what a particular change relates to. However, in most cases the default content type will
be the most appropriate to use.

Reorganize Contributors

Before starting to look at any of the changes in the change list, it's a good idea to first check
so that the correct model versions were chosen as the left and right contributor. As said previ-
ously Compare/Merge reports changes as "what happened to the left contributor compared to
the right contributor" or, put differently, "what changes are required to be made in the right
contributor to make it equal with the left contributor". If you by mistake choose the contribu-
tors in the wrong order when doing a compare, you will see Add changes when Delete

11

changes were expected, and vice versa. If this happens you can easily swap the order of the
contributor models by using the Reorganize Contributors button. When pressing the button a
dialog appears that lets you swap the order of the contributor models:

If the compare is three-way an ancestor contributor will also be shown here.

Close the dialog by pressing the Restart button to relaunch the compare session with re-
ordered contributors.

Browse Button

The Browse button is a toggle button which, if pressed, switches the Compare user interface
to a so called browse mode. In this mode only two compartments (three in case of three-way
compare) are visible, one for each contributor model. In the browse mode you can explore the
contributor models in more detail than what is otherwise possible. Each compartment will
show three tabs that let you explore the model in different ways:
• Explorer

Explore the model using a tree viewer similar to the Project Explorer.
• Properties

Explore all details of one particular element in the model using a property page similar to
the Advanced tab in the Properties view. To use the Properties tab first select an element
in the Explorer tab, then right-click and choose the Show in Properties command.

• Diagram
Explore a diagram of the model. To use the Diagram tab first select a diagram in the Ex-
plorer tab, then right-click and choose the Show in Diagram command.

Note that you can also explore the contributor models using the regular Properties view and
Code view. See Exploring the Contributor Models to learn more about this.

12

Preferences Menu

This menu is located in the top-right corner of the Compare user interface. It contains a Pref-
erences command that opens the preference page for Compare/Merge. The menu also repeats
some of the commands from the toolbar.

Add Task

This button creates a Compare/Merge task for the change that is selected in the change list.
You can for example use this as a means of reviewing changes in a model. See Compare/
Merge Tasks for more information.

Save List of Changes

This button allows you to save the list of changes to a textual log file. You will be asked if you
want to save only the changes that are currently visible (i.e. not the ones that are hidden be-
cause you have applied a filter), or if you want to save all the changes.

The dialog uses the term delta, which is just a fancy name for a change. See Delta Tree Con-
figuration for more information about how the change list can be filtered.

13

Sub Compare Button

This button becomes enabled when you select a change in the change list that relates to a
changed code snippet or documentation comment. Such changes are best explored using a
textual sub compare session. See Sub Compare for more information about what this is.

For a code snippet that contains C++ code the default sub merge command is Compare As C+
+ Source File which means that the compare tool provided by CDT will be used for compar-
ing the code snippets. However, you can also do the sub compare by choosing Compare As
Text in the button menu. In this case the base text compare tool provided by Eclipse will be
used.

If you choose Compare As... in the Sub Compare button menu a dialog appears that lets you
choose both which tool to use for the sub compare, and also in which order the contributors
should be set for the sub compare session:

Usually there is no reason to swap the contributors with this dialog since the default order is
the same as is used for the corresponding left and right contributor models in the enclosing
model compare session.

Next/Previous Buttons

You can use these buttons to go through the changes in the change list, as an alternative to
clicking on the changes one by one.

Delta Tree Configuration

14

Sometimes the number of changes in the change list can be so large that it becomes impracti-
cal to show them all at the same time. In this case you can use the Delta Tree Configuration
button to apply a filter so that some of the changes become hidden. If you press the button the
following dialog appears:

The bottom drop down menus allow you to configure how to sort and structure the changes
that are shown in the change list. The default sorting is to sort according to the number of de-
pendent changes, so that changes that have many dependent changes appear before changes
that have few dependent changes. See Dependent Changes for more information about what a
dependent change is. You can also choose to sort by model element name, by the change de-
scription ("Delta Label") or not to sort at all. The default structuring of changes is "Hierarchy
Structure" which means that changes are grouped into a hierarchy corresponding to the hierar-
chy of the changed model elements. There are several other alternatives for how to structure
the change list, including "Flat Structure" which means that changes are not grouped at all but
appear in a single flat list.

The Filters list shows all the different kinds of changes that may appear in the change list. See
Types of Changes for more information about what the different kinds of changes mean. Note
also that some filters simply work by filtering out all changes that are related to a certain kind
of element, regardless of the type of changes:
• The "Diagram Changes" filter means that all changes that are related to diagrams will be

filtered out (everywhere, or only under the “Model View” node)
• The "Documentation Changes" filter means that all changes that are related to documen-

tation comments will be filtered out.
• The "Stereotype Application Changes" filter means that all changes that are related to ap-

plied stereotypes will be filtered out.

It can also be useful to filter out all changes that are not related to code changes, by choosing
“Show code changes only”.

15

You can create your own custom filter by pressing the Add button:

This dialog lets you create a filter that
• filters out changes of one or many types (mark the checkboxes in the upper list for which

types of changes to filter out)
• filters out changes that relate to model elements of certain kinds (mark the checkboxes in

the lower list for which kinds of model elements to filter out)
• filters out changes that have a certain kind of description (enter a regular expression in

the bottom text box which will be matched against the description of changes, and hide
those changes that match)

16

For example, if you want to filter out all changes that relate to attributes that start with the
prefix "He" you may create a filter with the meta-class "Property" selected in the lower list
and with the following description pattern: He*

The Delta Tree Configuration button also has a button menu that lets you turn on or off filters
quickly:

The commands in this button menu let you do the same kind of filtering, sorting and structur-
ing of the change list as the Delta Tree Configuration dialog described above. In addition it
contains a few other commands that affect what is shown in the change list:

17

• Add to Exclusion Set
This command can be used to add a selected change to a predefined filter called "Ex-
clusion Set (N)" where N is the number of changes that have been added to this filter.
This is hence a way to filter out individual changes from the change list.

• Show description section
This command toggles visibility of a text box at the bottom of the change list which
contains a more detailed description of the selected change. Here is an example:

The detailed description text can be quite technical, and by default this text box is not
shown to save user interface space.

Change List Compartment
The change list shows all (or a subset of, if a delta tree filter has been applied) the changes be-
tween the left and right contributor models. The changes are always presented as related to the
left contributor model. For example, if the left contributor contains an attribute that the right
contributor does not contain, the change list will contain an Add change for that attribute:

You can right-click on a change in the change list and perform the Navigate – Show in Project
Explorer command in order to try to locate the changed model element in the model that is
loaded in the Model RealTime workspace. Doing so can help you better understand the con-
text of a particular change, but the navigation will of course only work if the changed element
exists in the workspace model. Depending on the kind of changed element there may also be
other useful navigation commands in the Navigate context menu. For example, if the changed
element is shown on a diagram you can navigate to that diagram.

The description text for a change in the change list can sometimes be quite long. If the text is
too long to fit in the change list compartment, you can look in the Model RealTime status bar
which also shows the description of the selected change.

Another approach Model RealTime uses to avoid very long descriptions of changes is to put
some of the information about the selected change in a separate text area. This text area is lo-
cated just below the change list. For example, for the attribute shown in the picture above the
text area will contain text that tells you what type the added attribute has:

18

Here we can see that the type of the added attribute is the primitive C++ type 'int'. There may
also be a more detailed technical description of the change. For example, above we can see
that the attribute "x" was added as one of the owned attributes of the capsule "HelloWorld".
Note that this text area is by default hidden (to save user interface space). You can make it vis-
ible by means of the command Show description section in the Delta Tree Configuration but-
ton menu.

The changes shown in the change list compartment are by default grouped into a hierarchy.
You may encounter the following groups of changes:
• Model View

Groups all changes to the model that do not fit under any of the other groups. These
changes affect the meaning of the model.

• Diagram View
Groups changes related to diagrams. These changes do not affect the meaning of the
model, but only how the model is presented in diagrams.

• Stereotype Application View
Groups changes related to applied stereotypes. Usually changes in applied stereotypes do
not change the core meaning of the model, but rather affect the additional information
which the applied stereotypes constitute. Such information may for example be used by
domain-specific tools that operate on the model.

• Fragment View
Groups changes related to model fragment files. These changes do not affect the meaning
of the model, but only how the model is stored in files.

Note that grouping is also used within the top-level groups mentioned above. The purpose of
such sub-groups is

• to give context to a change. For example, the location of a change in the model is
shown by grouping the change under nodes that tell in which class/capsule and pack-
age the changed element is located.

• to group multiple related changes. For example, a simple editing operation such as re-
sizing a symbol on a diagram typically causes two changes (one for the change in
width, and another for the change in height), and by grouping them under a single par-
ent “Change Size” change it becomes easier to quickly understand how the model has
changed.

If you prefer to not group changes into a hierarchy you can select "Flat Structure" in the Delta
Tree Configuration button menu. In this menu you also have choices for sorting the list of
changes.

19

In case of a three-way Compare session the change list compartment will have tabs that show
three lists of changes:
• Left Changes

The changes between the left contributor and the common ancestor.
• Right Changes

The changes between the right contributor and the common ancestor.
• Conflicts

The list of those changes in the Left Changes and Right Changes tabs which are conflict-
ing.

Contributor Model Compartments
These two compartments show the left and right contributor models. When you select a
change in the change list the changed element is highlighted in both the left and right contrib-
utor model in order to visualize the impact of the selected change. If the changed element
does not exist in one of the contributors, the nearest container element is highlighted instead.
Also, a line is drawn between the contributor models to indicate how they are related by the
selected change. For example, if a change describes that an operation "doSmth" was added in
the capsule "MyTopCapsule" in the left contributor model, the contributor model compart-
ments may look like this:

The contributor model compartments provide different tabs in order to present the change in
different ways. Depending on the type of change that is selected in the change list, different
tabs will be available. Sometimes you may have to switch to a different tab to fully under-
stand exactly what has changed. The following tabs are used:
• Explorer

Shows the change in a tree viewer similar to the Project Explorer. This tab is useful for

20

seeing where in the model the change belongs. This is the default tab for most kinds of
changes.

• Text

Shows the change in a text viewer. This tab is useful for changes in textual properties
such as code snippets or documentation comments. However, a sub compare of a textual
property may be even more useful. You can launch a sub compare from the Text tab by
right-clicking in the text viewer and selecting the command Show Text Sub Merge Pane.
See Sub Compare for more information.

• Properties
Shows the change in a property page that is similar to the Advanced tab of the Properties
view. This tab is useful for changes in properties that are not textual, or that contain rather
short texts (such as the name of an element). For changes in textual properties that con-
tain longer texts the Text tab is more appropriate.

• Diagram
Shows the change in a diagram. This tab is useful for changes related to diagrams, such as
when a symbol has been repositioned or a line has been rerouted. The change is shown in
the diagram using a colored ellipse. The colors that are used have the following meaning:
◦ Green. Used for Add changes.
◦ Grey. Used for Modify changes.
◦ Red. Used for Delete changes.
In case of a three-way compare the Diagram tab has a button Show Ancestor Diagram (

) in the upper right corner which allows the diagrams from the ancestor and the con-
tributor models to be overlaid graphically. This can sometimes help you understand what
was changed in the diagram.

• EMF List
This is an advanced tab that sometimes shows additional low-level information about a
change. You usually do not need to use this tab, and it will only appear if the preference
General - Compare/Patch - Modeling Compare/Merge - EMF Compare/Merge - Display
EMF tabs in Compare/Merge Editor has been set.

In the case of a three-way compare (i.e. when a common ancestor model is available) there

will be a button called "Show All Contributor Panes" () in the upper right corner of the
contributor model compartments. If you press this button you will see the common ancestor
model in the middle between the contributor models. You will also see how each change in
the contributor models relates to the common ancestor model by means of lines drawn be-
tween the compartments. It can for example look like this:

21

This extended view is possible to show only when doing a three-way compare, because then
two sets of changes are computed by the Compare tool:
1. The changes between the left contributor and the common ancestor.
2. The changes between the right contributor and the common ancestor.
So if you are unsure whether you are actually doing a two-way or three-way compare, you can
check if the "Show All Contributor Panes" button is visible or not. This information is also
shown in the tooltip for the Compare editor:

Sub Compare
Some of the changes you will find in the change list may be Modify changes where the modi-
fied property contains a piece of text. A typical example is when a code snippet has been mod-
ified on a model element. A code snippet can be a fairly large piece of text, and viewing these
changes using the Text tab in the contributor model compartments of the Compare user inter-
face is not so easy. To get a better visualization of such textual changes you should instead do
a sub compare on the change.

A sub compare is a textual compare session that is "nested" within the model compare ses-
sion. When doing sub compare a text-based compare tool is launched in order to show the dif-
ferences that are located in pieces of text, such as code snippets. For C++ code snippets, sub
compare by default uses the compare tool that is provided by CDT. Hence you can compare
changed C++ code snippets in the same way as you compare two changed C++ files.

Sub compare starts automatically when you select a change that is related to code snippets.
The textual compare tool that sub compare uses replaces the two contributor model tabs. It
may look like this:

To stop the sub compare session you can press the button Show Visualization of Structural
Changes (). If you later want to go back to sub compare you can press the button Show

Text Sub Merge Pane (). This command is also available in the context menu of the Text

tab.

In addition to code snippets it is possible to launch sub compare on changes related to docu-
mentation comments. This is especially useful if the documentation comment contains rich
text. To launch sub compare on a documentation comment choose Compare As Rich Text in
the Sub Compare button menu:

22

The rich text sub compare tool understands the contents of rich text comments better than the
plain text compare tool does, and can highlight the changes in the comments in a better way:

Merging Models
Let's now look at the slightly more complex task of merging two models (or more precisely,
two versions of the same model) into a third copy of the model. Just like when comparing
models we refer to the two models that are merged as the left and right contributor models re-
spectively. The model that is created by the merge operation is called the merge result model.
In addition to these three models there is also a fourth model involved; the common ancestor
model from which both the contributor models originate.

The Merge tool starts by comparing the contributor models against the common ancestor
model to get the list of changes for each contributor. Then it analyzes these changes to see if
any of them are conflicting. A merge conflict consists of two changes, one from each contrib-
utor, that cannot both be applied to the merge result model at the same time. To complete the
merge session you have to resolve all merge conflicts by deciding, for each one of them,
whether the change from the left or the right contributor should apply. You can also resolve a
conflict by deciding that neither of these changes should be included in the merge result
model.

All non-conflicting changes are by default applied automatically by the Merge tool. That is,
the Merge tool assumes that you want to have all changes from both the left and the right con-
tributor models in your merge result model. Usually this is what you want but in some cases
this is not appropriate, and you may want to skip some of the changes. For example, during
the merge session you may realize that the authors of the left and right contributor models
may have solved the same problem in two different ways. Their changes may not conflict on a
structural level (i.e. they have not modified the same part of the model), but still it does not
make sense to have both changes in the merged model. This is an example of a logical merge
conflict. The Merge tool can only detect structural merge conflicts; it cannot help you to de-
tect logical merge conflicts (except in some simple special cases, as mentioned in Structural
Merging by Combining Models). There is no guarantee that just because no merge conflicts

23

are reported, the merge result model will be logically correct. This is something only a human
being can confirm, and it is therefore recommended that you review all changes that will be
applied to create the merge result model, and also to review what the merge result model will
look like after the merge.

A special case of a logical merge conflict is when the standard UML allows something which
is not supported in the RT subset of UML. For example, in standard UML a composite state is
allowed to have multiple regions, each of which can contain a sub statemachine for the state.
However, in Model RealTime only one region with one sub statemachine is supported. If you
merge two versions of a model where in both versions a non-composite state has been made
composite by adding a sub statemachine for it, then the merge result model will contain both
these sub statemachines. Such a model is valid according to UML rules, but invalid according
to the more strict UML-RT rules. The reason for problems like this one is that the Model Re-
alTime Merge tool is not aware of all RT specific constraints and hence misses certain logical
conflicts. Therefore it is sometimes necessary to edit the merge result model after the merge to
make it a correct UML-RT model. By carefully reviewing the merge result model prior to
completing the merge session you avoid surprises and can detect places in the model where
post-merge editing may be required. You may use Compare/Merge Tasks to help remember
changes that are required after completing the merge session.

A merge session that does not contain any merge conflicts (i.e. a trivial merge), and where you
are confident that there also will not be any logical merge conflicts, can be performed without
using the Merge user interface. We call this an automatic merge since the Merge tool then
can complete the merge session automatically without any user interaction. One example
when it is safe to do an automatic merge is when delivering from a feature stream to the main
stream, where you just previously have rebased so that all changes from the main stream al-
ready were merged into the feature stream.

You can trigger a merge in many different ways in Model RealTime. Let's look at some of
these possibilities before we describe the Merge user interface.

Merge from File System
There is no command in the Model RealTime user interface for merging model files in the file
system, because usually you don't have different versions of the same model in a project. But
you can merge files in the file system from the command-line using the Command Line Tool
for Compare/Merge.

Merge from CM System
When using a CM system, such as ClearCase or Git, it is usually easiest to merge two ver-
sions of a model by triggering the merge from the version tree where you can see all available
versions of the model.

ClearCase
With ClearCase you use the view called ClearCase Version Tree. Make sure that your
ClearCase view selects the version of the model that you want to modify (i.e. the target ver-
sion for the merge). Then select the version you want to merge from and perform the com-
mand Merge to View Selected Version in the context menu. For example, consider the version
tree shown below:

24

To merge the changes from version 3 on the main branch with version 2 on the feature
branch, you right-click on version 3 and perform Merge to View Selected Version. ClearCase
will then checkout version 2 on the feature branch and start the merge session. When the
merge session is completed, the merge result model is committed to the checked out file. You
can then check in the resulting model as version 3 on the feature branch.

You can also trigger the merge from the command-line using tools such as "cleartool". For ex-
ample, for ClearCase the equivalent of the above mentioned merge operation would be

cleartool findmerge HelloWorld.emx@@\main\feature1\2 -fta main_view -nc -
merge -gmerge

Here we just specify the target version of the model, and then use the -fta argument to spec-
ify the source view that selects the latest version on the main branch. ClearCase will attempt
to do an automatic merge, but if this fails because there are merge conflicts that need to be re-
solved, the merge session will be sent to Model RealTime using the Compare/Merge Server.
You then perform the merge using the Merge user interface in Model RealTime, and when
you commit the merge result, ClearCase considers the file to be merged.

Git
With Git you use the History view configured to show all branches and tags. Make sure you
have the target version for the merge checked out. Then select the branch you want to merge
from and perform the command Model Merge in the context menu. For example, consider the
version tree shown below:

25

To merge the changes on the master branch with the branch called 'feature1', you right-click
on the master branch commit (07fa486) and perform Model Merge. By default a dialog ap-
pears which lets you choose how to perform the merge (the preference Team – RSx EGit Inte-
gration – Merge kind selection can be set to avoid this dialog):

See Logical Models to learn about what logical model and closure merge means.

The merge is performed automatically, without showing the Merge user interface. You will be
notified with a dialog if conflicts are detected and they are then shown using red icons in the
Project Explorer on those top-level nodes that are stored in their own files:

Files with conflicts are also shown in the Git Staging view under “Unstaged Changes”. Files
that could be merged without conflicts will be automatically staged and will hence show up
under “Staged Changes”.

26

To resolve conflicts you can right-click on a file marked to have conflicts in the Git Staging
view and perform the command Merge Tool. It is also available from the Project Explorer
context menu under the Team menu. The command brings up the Merge user interface which
you then use for resolving the conflicts. When you have committed the merge session your
workspace contains the merge result. By default files are automatically staged when you com-
mit the merge session. There is a preference Team – RSx Egit Integration – Automatically add
resources to index after resolving conflicts which you can disable if you prefer to manually
stage the merged files.

When the merged files have been committed to the Git repository the History view will up-
date to show that a merge has taken place:

Note that if there are no merge conflicts, you cannot run the Merge Tool command and hence
the Merge user interface will not appear. In this case you can instead run a Compare of the
merge result model in your workspace with the predecessor version to ensure that it looks as
expected before committing it to the Git repository.

It is possible to launch the Merge tool from the Git command line. You need to configure the
git mergetool to invoke the Command Line Tool for Compare/Merge.

Merge User Interface
The Merge user interface is to a large extent the same as the Compare user interface (see
Compare User Interface). However, some additions are made to support the more complex
merge workflow.

27

The Merge user interface consists of four compartments:

The top left compartment shows the list of changes. They are organized into three tabs:
• Left Changes

These are the changes between the left contributor and the common ancestor model.
• Right Changes

These are the changes between the right contributor and the common ancestor model.
• Conflicts

These are the changes that are in conflict and that need to be resolved during the merge
session.

The bottom two compartments show one of the contributor models and the ancestor model. If
you select a change from the Left Changes tab the left contributor model and the ancestor
model will be shown. And if you select a change from the Right Changes tab the right contrib-
utor and the ancestor model will be shown. This is how you can understand what has hap-
pened to each contributor model since the common ancestor version.

If you press the button Show All Contributor Panes () you will see both the left and the
right contributor panes at the same time as the common ancestor model. This may be useful
when you have selected a conflict, to better understand how the changes from the left and
right contributors are in conflict with each other.

The top right compartment shows the merge result model. This is the model that you edit dur-
ing the merge session. It is edited by accepting or rejecting changes from the left and right
contributor models. When the merge session is completed, and you press the Commit Merge

Session1 button (), the merge result model will be saved. It is usually recommended to have
the merge result model loaded in your workspace, because then you can continue to edit it di-

1 Git users should not be confused by the terminology here. Committing the merge session just means the
merge session is completed. It does not mean that the merge result model is also committed to Git.

28

rectly after completing the merge session. Sometimes it is necessary to edit the merge result
model manually after a merge session has been completed because some of the merge con-
flicts could not be properly resolved by the Merge tool. For example, you may want to resolve
a merge conflict by accepting both the left and the right contributor change, and then make
some small modification to the resulting model. The Merge tool won't let you do this, and
such more advanced ways of resolving conflicts have to be done as a post-merge edit opera-
tion. You may use Compare/Merge Tasks to help remember changes that are required after
completing the merge session.

Before we go into the details of the Merge user interface, here is a brief summary of the basic
steps you take when merging two models:
1. When the merge session starts, and the Merge user interface appears, all non-conflicting

changes have by default already been accepted, and are hence present in the merge result
model from start.

2. Click on the Conflicts tab in the change list compartment and check if there are any con-
flicting changes that need to be resolved. The number within parenthesis tells you how
many conflicts there are, and the text above the change list tells how many of these con-
flicts that remain to be resolved. For example:

3. If there are unresolved conflicts select the first one from the list. Look at the visualization
of the changes in the left and right contributor models using the bottom compartments.
When you understand how the changes conflict with each other, decide if the conflict
should be resolved by accepting the left change, the right change or none of the changes.
See Resolving Conflicts for more information.

4. If you don't understand the conflict, or suspect that it may be a consequence of another
conflict, skip the conflict and proceed to the next one. Work your way through all con-
flicts in the order in which they appear in the Conflicts tab.

5. When you see the message above the change list that there are 0 unresolved conflicts you
are done, and can finish the merge session. This is done by pressing the "Commit Merge

Session" button ().

Now let's take a closer look at the Merge user interface. We will only cover the merge-specific
parts of the user interface. Most parts of the user interface is the same as when comparing
models (see Compare User Interface).

Add Task

This button is the same as in the Compare user interface (see Add Task), except that during a
merge session it creates a different kind of Compare/Merge task based on a selected conflict
which has been resolved, or based on an element that is selected in the merge result model.

29

The created task can help you remember how a particular conflict was resolved, or that a cer-
tain element in the merge result model needs to be manually edited after completing the
merge. See Compare/Merge Tasks for more information.

Accept All Non-Conflicting Changes

Pressing this button will accept all changes from the left and right contributor models that are
not conflicting with each other. The changes will be applied to the merge result model. When
you start a merge session all non-conflicting changes are by default automatically accepted, so
you only need to use this button if you later have rejected some of these changes, and now
want to accept them all again.

If you don't want the Merge tool to automatically accept non-conflicting changes when the
merge session is started you can turn off the preference General - Compare/Patch - Modeling
Compare/Merge - Automatically accept resolvable differences for repository merge session.

Enable Auto-Advance

If this toggle button is pressed, the Merge user interface enters a mode where it automatically
selects the next conflict as soon as you have resolved the previous one in the list.

Accept

Pressing this button will accept the change that is selected in the change list. If the selected
change is conflicting with another change, then accepting the change will automatically reject
the conflicting change. When a change has been accepted the merge result model is modified
so that it contains the change. Also, to show that the change has been accepted a small "ac-
cepted" decorator will be shown on the change. For example, the accepted change shown be-
low means that the merge result model has been modified to now contain the added attribute
"attribute1":

Reject

Pressing this button will reject the change that is selected in the change list. Note that if the
selected change is conflicting with another change, then rejecting the change will not auto-
matically accept the conflicting change. You have to specifically accept that conflicting
change if you want to have it in the merge result model. When a change has been rejected, and
the change previously existed in the merge result model, then the merge result model is modi-
fied so that it no longer contains the change. Also, to show that the change has been rejected a

30

small "rejected" decorator will be shown on the change. For example, the rejected change
shown below means that the merge result model has been modified to now not contain the
added attribute "attribute1":

Accept All Changes from Left

Pressing this button will accept all changes from the left contributor model. This command is
equivalent to selecting the changes in the “Left Changes” tab one by one, and do Accept on
each of these changes. This means that all conflicts will be resolved afterwards.

Accept All Changes from Right

Pressing this button will accept all changes from the right contributor model. This command
is equivalent to selecting the changes in the “Right Changes” tab one by one, and do Accept
on each of these changes. This means that all conflicts will be resolved afterwards.

Next/First Unresolved Buttons

These buttons can be used to quickly go through the list of merge conflicts that remain to be
resolved. When you select the first conflict in the Conflicts tab the Next Unresolved button be-
comes enabled and you can press it to go to the next unresolved conflict. And if you press the
First Unresolved button the first of the conflicts that is still unresolved will be highlighted.
Hence, these buttons make it convenient to find unresolved conflicts, especially for the situa-
tion when you choose not to resolve the conflicts in the same order that they appear in the
“Conflicts” tab.

Undo/Redo Buttons

These buttons operate on the merge result model. You edit the merge result model by accept-
ing or rejecting changes from the contributor models, or in the case of a textual sub merge,
also by directly editing the merge result model. You can use the Undo and Redo buttons to
undo such edit operations.

Commit Merge Session

This button becomes enabled as soon as you have resolved all the merge conflicts. Pressing it
will complete the merge session, by committing the changes that have been made to the merge
result model.

31

For Git users the term “commit merge session” may be slightly confusing, since this has noth-
ing to do with Git commits. What is meant by committing a merge session is to complete it
and save all results in the merge result model. The changes will not be committed to Git.

Before the merge session is committed you will be prompted for confirmation:

Press Cancel to return to the merge session and Commit Result to finish the merge session and
save the merge result model to disk. After the merge session has been committed you can con-
tinue to edit the merge result model just like any other model that you have in your
workspace. For example, you may need to do post-merge editing to fix issues caused by con-
flicts that could not be properly resolved using the Merge user interface.

Another way to commit the merge result and finish the merge session is to simply close the
Merge editor window, and then answer Yes to the question about saving the merge result
model. However, this approach is not recommended because if you missed to resolve any of
the conflicts, the saving of the merge result model will be aborted, and in this case you will
loose all the changes you have done during the merge session.

Cancel Merge Session

If you press this button the merge session will be cancelled. All changes you have made to the
merge result model by accepting and rejecting changes, and by editing in textual sub merge
sessions, will be lost. Before the merge session is cancelled you will be prompted for confir-
mation:

Press Cancel to return to the merge session and Discard Result to stop the merge session and
discard the merge result model.

32

When using ClearCase note that files that were automatically checked out when the merge
session was started will still be checked out after the merge session has been cancelled, and
you may want to do Undo Checkout on these files.

You can also cancel the merge session by simply closing the Merge editor window, and an-
swer No to the question about saving the merge result model.

Save a Copy

Pressing this button will save a copy of the merge result model. You can only do this when all
merge conflicts have been resolved. The main reason for saving a copy of the merge result
model is to remember what the model looked like immediately after the merge session was
completed, before starting to do any post-merge editing. If you want to save the merge result
before the merge session is completed, you first have to ignore all remaining unresolved con-
flicts. This may be useful if the merge is complex, and you want to save the merge result
model at a particular point in time before certain complex conflicts have been resolved.

It can also be useful to have a copy of the merge result model if you later find that the merge
session introduced errors in the model, for example because conflicts were resolved in an in-
appropriate way. You may then want to redo the complete merge session, and resolving the
conflicts in a different way. A copy of the previous merge result model can then be useful to
avoid making the same mistake again. Also, you can of course compare saved merge result
models using the Compare tool, to study the effect of resolving conflicts in a different way.

If you perform the Save or Save All command when the Merge editor is open, the merge result
model will be saved to a temporary location. However, saving is only possible if there are no
unresolved merge conflicts.

Resolving Conflicts
The time it takes to perform a merge session very much depends on the number of merge con-
flicts you have to resolve. If there are no, or few, conflicts the merge will usually be quick and
easy, while if the number of conflicts is big, the merge will take a longer time to complete and
may be more complex. Therefore, it is important to work in a way that reduces the number of
conflicts you get when merging models.

The main advice for increasing the likelihood of getting simple merges is to merge frequently.
If you are working on a feature stream, it is a good idea to compare your version of the model
on this feature stream with the latest version on the main stream at regular intervals. If you de-
tect changes you should consider rebasing, to merge these changes into your feature stream
sooner rather than later. For the same reason it is important that you deliver your changes to
the main stream incrementally, and avoid waiting a long time and then delivering a big
amount of changes in one big delivery. Following this approach will help developers that
work on other feature streams so that they don't get too many conflicts the next time they re-
base their features streams.

33

Of course, the importance of following the above recommendations becomes bigger if many
feature streams make changes to the same parts of the model. For features that are more iso-
lated from the work of others, you don't have to rebase and deliver that frequently since you
won't get many conflicts anyway.

If there are merge conflicts reported you have to resolve these before you can complete the
merge session and commit the merge result. Use the Conflicts tab and the Next Unresolved
button to go through the merge conflicts one by one. Model RealTime by default sorts the
conflicts so that the ones that are best to resolve first appears at the top of the list. For exam-
ple, conflicts related to model elements appear before conflicts related to diagrams, since re-
solving a conflict for a model element often automatically resolves a diagram related conflict
too.

In some special cases you may want to resolve all conflicts by consistently choosing the
change from either the left or right contributor. For example, if you only did very few changes
on the feature stream, but still got lots of conflicts, it may be easier to resolve the conflicts by
accepting all the changes from the main stream, and then redo your feature stream changes
again after the merge has been completed. To resolve all conflicts right-click on the top-level
Conflicts node in the Conflicts tab and choose either Resolve All with Left Contributor or Re-
solve All with Right Contributor. You can also choose to resolve the conflicts by ignoring
them, that is to neither accept the left nor the right changes. In that case the affected model el-
ements will look like in the common ancestor model once the merge is completed.

However, the most common scenario is to resolve conflicts individually, one by one. Each
conflict is represented by a separate node in the Conflicts list, and below this node you can
see the changes from the left and right contributor that is in conflict with each other. To re-
solve a conflict right-click on its node in the Conflicts tab:

34

Choose Resolve with Left Contributor to accept the change from the left contributor and at the
same time reject the change from the right contributor. Or choose Resolve with Right Contrib-
utor to do the opposite. You can also choose to resolve the conflict by ignoring it, that is to re-
ject both the left and right change. This can be useful if the conflict needs to be resolved by
somehow combining the left and right changes. The Merge tool won't let you do this, but you
can resolve the conflict by ignoring it, and then later when the merge session is completed, re-
turn to the affected model element and edit it manually. It's a good idea to keep a separate list
of elements that you need to get back to once the merge session is completed. The
Compare/Merge Tasks view can help you with this.

As you can see in the above picture, conflicts related to textual modifications can also be re-
solved by invoking a sub merge session. See Text Merge for more information about this pos-
sibility.

Before you can decide how to best resolve a particular conflict you usually have to study the
conflicting changes carefully. The name of the conflict describes the type of conflict and in
which way the left and right changes are conflicting. Here are some examples of common
kinds of conflicts you may encounter:
• Conflicting Modifications

The same element property was modified in both contributors.
• Conflicting Addition and Deletion

An element was added in one contributor, but one of its container elements was at the
same time deleted in the other contributor.

• Conflicting Modification and Deletion
An element was modified in one contributor, but at the same time deleted in the other
contributor.

There are many more possible combinations in which two changes may conflict. See Types of
Changes for a list of all the possible changes which may be part of a conflict.

When a conflict is selected the Merge user interface shows in the bottom compartments how
the element has been modified in both the left and right contributor models compared to the
common ancestor model. Let's look at an example:

35

Here we have a conflict that is caused by the type of an attribute "x" being changed in both
contributor models. In the bottom compartments we can see that in the left contributor the at-
tribute's type was changed from "int" to "char", while in the right contributor it was changed
from "int" to "bool". You can also select one of the changes shown below a conflict node to
only look at the details of that particular change in one of the contributors. Then the four com-
partments shown in the picture above will be replaced by only two compartments; one for the
contributor model and one for the common ancestor model. Thereby the compartments can
take up more space, which in turn can make it easier for you to see exactly what has changed.

As you can see in the picture above there are Accept and Reject buttons also in the compart-
ments that show a change in a contributor model. These buttons work in the following way:
• If you press the Accept button the change from that contributor will be accepted. At the

same time the conflicting change from the other contributor will be rejected.
• If you press the Reject button the change from that contributor will be rejected. However,

this does not mean that the conflicting change from the other contributor gets accepted
automatically. Instead, the merge result becomes the same as the common ancestor
model, and you have to explicitly press the Accept button for the other contributor if you
want that change to be in the merge result model.

If you encounter a merge conflict that is hard to understand, a pragmatic approach is to simply
skip it and proceed to the next conflict. Since resolving one conflict may automatically also
resolve other conflicts there is a chance that the skipped conflict will disappear once you have
resolved another conflict in the list.

Another guideline is to first resolve those conflicts that have a big impact on the merge result
model, such as adding or deleting container elements in the model, before looking at conflicts
for elements that are contained within these elements. When you resolve such "container ele-
ment" conflicts it is likely that many other conflicts will be automatically resolved too.

36

Conflicts that have been resolved are marked with an icon to distinguish them from unre-
solved conflicts. For example:

Here, the first conflict has been resolved by accepting either the left or right change, the sec-
ond conflict has been resolved by ignoring it (i.e. neither the left nor the right change was ac-
cepted), and the third conflict is still unresolved.

Dependent Changes
A model consists of elements that are highly interconnected. Therefore it is not uncommon
that changes depend on each other. That is the reason why resolving one conflict may auto-
matically resolve other conflicts at the same time. When you accept or reject changes the
Merge tool will evaluate the effect those changes will have on the merge result model. The
overall requirement is that the merge result model must never be inconsistent or corrupted by
the merge. Dependent changes are those changes that the Merge tool has to automatically ac-
cept or reject depending on the choices you make during the merge session.

Sometimes you may encounter a situation where you have resolved all conflicts, but still there
may be dependent changes from either the left or right contributor models that are neither ac-
cepted nor rejected. Because these are dependent changes the button Accept All Non-Conflict-
ing Changes can not always be used to accept such changes. If you try to commit the merge
result and finalize the merge session when you still have such dependent changes that are nei-
ther explicitly accepted nor rejected you will get a warning dialog:

You may proceed and complete the merge, but then these changes will be ignored and will
hence not be present in the merge result model after the merge. It is strongly recommended
that you use the Left and Right tabs to look at these changes and make an explicit decision for
each of them whether to accept or reject them. To know whether the unresolved changes come
from the left or right contributor model you may click on the top-level nodes in the Left and
Right tabs. This shows a message in the text area2 below that tells you how many changes
there are in total for that particular contributor, and how many of these changes that are cur-

2 This text area is by default hidden but can be made visible by running the command Show description section
in the Delta Tree Configuration button menu.

37

rently unresolved. For example, for the situation that caused the warning dialog shown above
you may see the following message for one of the contributors:

There are 49 change(s) in the contributor. Among them, 14 change(s) still require resolution.

When you go through the contributor changes you should look for changes that are not
marked as neither accepted nor rejected. For example, in the picture below the first change
has neither been explicitly accepted nor rejected, while the second has been accepted and the
third has been rejected.

Text Merge
If you get a merge conflict because both the left and right change involves a property that con-
tains a piece of modified text, such as a code snippet, then you resolve the conflict by per-
forming a textual merge of the modified texts.

Here is an example of what the Merge editor could look like when you select a conflicting
text modification:

In the text editor at the bottom you see the merged text. For conflicting parts the left and right
versions are highlighted with colors (customizable in the preferences at General – Compare/
Patch – Modeling Compare/Patch – UML Compare/Merge – Text annotation settings). There
are also markers in the text showing which contributor a particular text fragment comes from.
The names of the versions (Git commit messages in the above picture) are shown in the left
column. If the version texts are too long to fit, hover the cursor over them to see the full texts
in a tooltip.

38

You can resolve each conflict by right-clicking in the text editor and perform one of the fol-
lowing commands:

If you want to resolve all conflicts in the text in the same way you can use the corresponding
toolbar buttons:

Initially the “Merged result” compartment in the upper right corner shows the ancestor ver-
sion of the text. But as soon as you save your changes in the text editor, it gets updated with
the contents of the text editor. That is, what you see in the text editor is really the text that will
be committed to the model (when you save).

In addition to using the commands for resolving conflicts, you can also resolve them by sim-
ply editing the text directly. This can be very useful if the left and right versions somehow
need to be combined, or if you want to resolve a conflict with a completely different piece of
text. You can make edits anywhere in the text, not only in conflicting parts.

The information text above the text editor shows the current state of the text merge. Initially it
says “Unresolved” (or “Auto resolved” in case there were no conflicts in the text), but as soon
as you have saved, so that the Merged result is updated, it will say “Manually merged”. You
can use the command Discard edit changes () to revert your changes and get back to the
“Unresolved” state.

Use the Next/Previous Difference buttons () to walk through all conflicting parts in the
text. You can also use the red markers in the right editor margin for quickly navigating to the
conflicts. The tooltip of these markers show the line where the conflicting piece of text is lo-
cated:

Press the Toggle Compare/Merge View button () to hide the text editor and instead show a
comparison between the ancestor version and the current merge result. This gives you an
overview of all changes you have made in the text during the merge session, and it can there-
fore be useful in order to review the merge changes as a last step in resolving the conflict.

Merging Rich-Text Comments
Merge of rich-text comments cannot be done in the same way as merging other pieces of text.
This is because rich text comments may contain annotations (markup), such as font styling,
images, tables etc. Allowing the merge result to be edited freely could in this case lead to cor-

39

Hint: Find/Replace can be used in both the text editor area and also in the “Merged result”
compartment.

rupted rich text that would not render correctly. Therefore the user interface for rich text
merging looks differently, and does not allow free editing of the merge result.

You have to resolve conflicts in rich text the usual way by accepting either the left or right
version (or none). By pressing the button Show Text Sub Merge Pane you can invoke Sub
Compare in order to get more information about the conflict. If you want more flexibility
when resolving conflicts in rich text, it’s recommended to edit the model after the merge. See
Compare/Merge Tasks for how to track needed post-merge changes during a merge session.

Structural Merging by Combining Models
When the Merge tool merges two models it by default uses the unique identifiers of the model
elements to compare the contributor models with the common ancestor model. If an element
with the same unique identifier is found in both the common ancestor model and in one of the
contributor models, the Merge tool knows that this element has not been added in the contrib-
utor model.

One consequence of matching elements by means of their unique identifiers is that if two de-
velopers, that work on different streams, add a class with the same name in the same package,
then these classes will have different unique identifiers and hence will be treated as different
classes by the Merge tool. However, since Merge knows that it is not allowed in UML to have
two classes with the same name in a package, it will report an Add/Add conflict for this case,
although strictly this is not a structural conflict but more of a logical conflict.

So when merging you have to choose one of the classes, but not both. But what if the two de-
velopers really meant that these two classes should be the same class, based on the fact that
they gave the classes the same name? The wanted merge result would then be just a single
class which combines the contents of the classes from both contributor models. In situations
like this one you need to merge models structurally, without using their unique identifiers as
the matching criteria.

Model RealTime supports a feature called Combine Models. It takes two models and performs
a structural merge of them, so that one of the models (the source model) is combined into the
other model (the target model). The source and target models can be any models and do not

40

need to be versions of the same model. That is, there is no common ancestor model involved
when merging models using the Combine Models feature.

Before you combine two models it is a good idea to take a copy of the target model. This is
because Combine Models will update the target model directly, giving you no possibility to
roll-back the changes unless you have a backup copy.

To use the Combine Models feature select two elements in the Project Explorer that are stored
as the root in a model file, right-click and choose the command Combine Models in the con-
text menu. A dialog appears where you can specify which of the selected models that should
be the target model:

Unless you are sure about the result of combining the models, it is recommended to leave the
checkbox "Attempt to combine models automatically" unmarked. Combining models auto-
matically is similar to an automatic merge; it may be convenient and quick, but you may also
get changes in the target model that you didn't expect.

The Combine Models user interface looks slightly different than the Merge user interface:

41

Combine Models match elements in the source and target models by name and structure
rather than using their unique identifiers. In the example shown in the picture above the at-
tribute "a" was added independently in both models. A regular merge would hence treat these
as different attributes. But Combine Models consider them to be the same since they have the
same name and structure.

To perform the combining of the models you mark all changes in the change list (the upper
compartment) that you want to apply to the target model. You can also select the elements in
the source model compartment. Finally press the OK button to commit the changes.

Most of the Combine Models user interface is the same as the Compare/Merge user interface.

The main difference is the button Show Manual Mappings Pane () which is explained be-
low.

Manual Mappings
Sometimes two elements in the source and target models may have different names and/or
structure, but still you want them to be matched as the same element when combining the
models. In this case you have to set-up a manual mapping between these elements. This is
done in the “Manual Mappings” pane at the top of the “Combine Models” dialog.

42

For example, assume we'd like to combine two capsules with different names:

To create a manual mapping between these two capsules, follow these steps:
1. Right-click on the "HelloWorld" capsule and perform Select Source element for manual

map.
2. Right-click on the "OtherCapsule" capsule and perform Select Target element for manual

map.
3. Press OK in the confirmation dialog that appears:

Now you can see the manual mapping you just created in the manual mappings pane:

Also, a blue line between the source and target model compartments shows that the two cap-
sules now are mapped:

Now you can mark the checkbox for "HelloWorld" and press OK. Afterwards you will see
that "OtherCapsule" now contains the port and the attribute from "HelloWorld". Also, the state
machines were combined without the need to define a manual mapping, since they already
had the same name.

Exploring the Contributor Models
To get a better understanding of a change or merge conflict it is often necessary to look at the
model context in which the changed model element is located. You may want to explore the
changed model element to reveal more details about it than what is shown in the change de-
scription. You may also want to explore other related model elements in either of the contribu-
tor models.

As already explained in Browse Button you can use the browse mode of the Compare/Merge
tool to explore the contributor models in more detail using the Explorer, Properties and Dia-
gram tabs of the contributor model compartments of the Compare/Merge user interface. How-

43

ever, you can also use some of the regular Model RealTime views that are updated when an
element is selected in the Compare/Merge user interface:
• Properties view

The Advanced tab of the Properties view is similar to the Properties tab that appears in
the browse mode. But the Properties view also provides several other tabs that make it
easier to find the property you are looking for. When showing properties for an element in
a contributor model the Properties view behaves in the same way as when it shows prop-
erties for an element in the workspace model, except that it does not allow you to edit any
property. Navigation by means of hyperlinks is also disabled.

• Code view
You can use the Code view to look at code snippets for elements that are selected in the
contributor models, or in the merge result model. Just like the Properties view, the Code
view will be read-only when it shows such a code snippet. However, you can use the nav-
igation commands that are provided by the Code view, for example in order to navigate to
the Project Explorer or a diagram. Just remember that when you open a diagram from one
of the contributor models or the merge result model, that diagram will be read-only as
well.

When you select a change or conflict in the change list compartment, the Properties view and
Code view are also updated. In this case the changed model element in the left or right con-
tributor models is used (depending on if the change is located in the Left or Right tab). If the
changed model element does not exist in that particular contributor model (as will be the case
for a Delete change), no information will be shown in the Properties view or Code view. If
you right-click on the change or conflict you can also choose to look at the changed model el-
ement in the other contributor model, the common ancestor model or the merge result model.
Depending on the kind of change and whether you are doing a compare or merge session not
all these models may be available to choose from in the context menu.

Types of Changes
Depending on how the contributor models have been modified a compare/merge session may
show different kinds of changes. Below we go through all the different types of changes you
may encounter when comparing or merging two models.

44

Add Change
An Add change means that a new element has been added to the left contributor model. The
change description is on the form

Add <element> to <location>

where <element> describes the new element and <location> describes where in the model it
has been added.

For example, the change shown above means that an attribute (a.k.a Property) "flag" has been
added to the capsule "TopCap".

Delete Change
A Delete change means that an element has been deleted from the left contributor model. The
change description is on the form

Delete <element> from <location>

where <element> describes the deleted element and <location> describes from where in the
model it has been deleted.

For example, the change shown above means that an operation "someOp" was previously
contained in the capsule "Capsule1", but has now been deleted from the model.

Modify Change
A Modify change means that an element has been modified, so that one of its properties has
changed in the left contributor model compared to what it is in the right contributor model.
The change description is on the form

Modify <property> of <element> from <value before> to <value after>

where <element> describes the modified element, <property> specifies which property of the
element that was changed and <value before> and <value after> describes the value of the
property before and after the change.

For example, the change shown above means that the type of the attribute "a" was changed
from "double" to "char".

Move Change
A Move change means that an element has been moved within a model. There are two ways
in which an element can be moved. Either it is moved within the same owner element, or it is
moved to a different owner element.
In the first case the element is reordered within its container collection, so that it still has the
same owner element after the move. In this case the change description is on the form

45

Reorder <element> within <owner>

where <element> describes the moved element and <owner> is the owner element within
which the element has been moved.

In the second case the element is moved so that it has a different owner element afterwards. In
this case the change description is on the form

Move <element> from <old owner> to <new owner>

where <element> describes the moved element, <old owner> is the owner element before the
move, and <new owner> is the owner element after the move.

Let's look at two examples:

This change means that the property (i.e. attribute) "a" was reordered within the capsule "Hel-
loWorld". That is, after the move the capsule still contains attribute "a" but at a different posi-
tion in its list of attributes.

This change means that the attribute "branched" was moved from the capsule "HelloWorld" to
the class "Class1".

Fragment Absorb Change
This change means that an element was absorbed from a fragment file (.efx), to instead be
stored in a model file (.emx). The change description is on the form

Absorb <element> from <fragment file>

where <element> describes the element that was absorbed from the fragment file and <frag-
ment file> is the affected fragment file that no longer stores the element afterwards.

For example, the change above means that the class "FragmentClass" was previously stored in
the fragment file "FragmentClass.efx" but was absorbed into the model file instead. Below the
fragment absorb change you can see that this change in fact is implemented by first deleting
the class, so that it gets removed from the fragment file, followed by adding it again into the
model file that now will store it instead.

46

Note that the model does not change because of a fragment absorb change. The class is
deleted from the same location in the model at which it later is added again. The only
difference is in how the model is stored in files.

Fragment Separation Change
This change means that an element was separated out into a model fragment file (.efx). The
change description is on the form

Separate <element> into <fragment file>

where <element> describes the element that was separated out to a fragment and <fragment
file> is the fragment file that stores the element afterwards.

For example, the change above means that the class "Class1" is now stored in the fragment
file "ModelFragment_1.efx". Below the fragment separation change you can see that this
change in fact is implemented by first deleting the class, so that it gets removed from its
previous file, followed by adding it again into the fragment file.

Note that the model does not change because of a fragment separation change. The class is
deleted from the same location in the model at which it later is added again. The only
difference is in how the model is stored in files.

Diagram View Position and Size Change
A change of this type means that a view (i.e. a symbol or a line) on a diagram has been
repositioned or resized. The change description has the following form for a symbol position
change:

Drag [View] <element> on diagram <diagram>

and the following form for a symbol size change:

Change Size of [View] <element> on diagram <diagram>

where <element> is the element whose view was repositioned or resized and <diagram> is the
diagram where the view is located.

For example, the change above means that a state symbol showing the state "CompositeState"
was moved on a state machine diagram. The details of how it was moved can be seen in
Modify changes for the X and Y coordinates that are nested below this change.

47

When the layout of a line has changed, the change description has the following form:

Modify layout of [View] <element>

where <element> is the element whose line was rerouted.

For example, the change above means that a line for transition ”t1” has been rerouted. The
detailed changes that are nested below it give some hints on how the line was rerouted, but
usually it’s easier to see this visually in the Diagram tab.

Compare/Merge Induced Reference Modifications
This type of change is used for changes that are not caused by any modification you have
made to the model yourself, but that the Compare/Merge tool itself has induced when loading
the contributor models. You may see such changes if you compare or merge models that have
been created in older versions of Model RealTime. They will only appear the first time you
compare or merge them. Once the models have been saved in the new Model RealTime
version these changes will no longer appear in future compare/merge sessions.

One example of this kind of change is when additional information has been added in model
files in order for Compare/Merge to be able to present changes in a better way. For example,
in order to be able to show the name of the event that is referenced by a transition trigger that
has been modified, it is necessary that the event name is available in the model file where the
transition trigger is stored. This is because Compare/Merge may only get that single model
file to operate on, and will then not be able to find out the name of the event unless it is
present in that model file. Because of this recent versions of Model RealTime now stores the
event name as an additional piece of information for transition triggers. However, the first
time you compare or merge against a file that was created in an old version of Model Real-
Time where this information was not present in the file, you will get a Compare/Merge
Induced Reference Modification. There is a filter available in the Delta Tree Configuration
button menu that you can use for hiding these kinds of changes.

Compare/Merge Induced Deletions
This type of change is used for elements that get indirectly deleted from the model when
another element gets deleted, even if they are not contained within it. For example, when you
delete an element which has stereotypes applied, the stereotype instances will be deleted too.
However, since the stereotype instances are stored separately from the element to which they
are applied, these deletions are not a structual consequence of the element deletion, but more
of a logical consequence (i.e. it usually does not make sense to keep such stereotype
applications once the element has been deleted).

Here is an example:

48

The ”Header Preface” code snippet for a class is stored by means of a stereotype. When the
class is deleted, so is the code snippet.

There is a filter available in the Delta Tree Configuration button menu that you can use for
hiding these kinds of changes.

Compare/Merge Tasks
Model RealTime provides a dedicated view that allows you to keep track of notes taken dur-
ing a compare or merge session. It can for example be used to remember actions that need to
be performed after a merge session, or to write review comments for changes.

To make this view visible invoke Window – Show View – Other and then type “task” in the fil-
ter box to find the view called “Compare/Merge Tasks” (it's located in the “Compare/Merge”
category).

There are a few different kinds of Compare/Merge tasks. The most general one is a Note task.
You create a Note task by pressing the Add New Compare/Merge Task button in the view's
toolbar. Provide a description and optionally a more detailed text in the dialog that appears.
Here is an example of a Note task created during a merge session.

Just like for tasks in the standard Eclipse Tasks view you may set a priority for a Compare/
Merge task (Normal, High or Low). There is also a checkbox which can be used to mark the
task as completed.

49

More specific kinds of Compare/Merge tasks are created using the Compare/Merge user inter-
face:

• Bookmark Task
The purpose of a Bookmark task is to set a “bookmark” on an element in a merge result
model, so that you can easily find that element after the merge session is completed. For
example, you may set a Bookmark task on an element which you think may require some
post-merge editing.
A Bookmark task is created by selecting one or many elements in the merge result model
and then pressing the Add Task button () in the Compare/Merge editor toolbar. The
command is also available in the context menu.

• The bookmarked element (or elements) appears below the bookmark task and you can
double-click to navigate to it in the workspace model.

• Ignored or Resolved Conflict Tasks
During merge a conflict can only be resolved by either accepting one of the contributor
versions, or by ignoring them both. Sometimes this is not flexible enough, and you may
want to resolve a conflict by taking parts from both contributors, or to take nothing from
the contributors but instead manually change the merged element in some way.
In these cases it is necessary to edit the merged model after completing the merge session.
To remember where and what to edit, mark the ignored or resolved conflict and press the
Add Task button () in the Compare/Merge editor toolbar (or use the context menu).

These Ignored or Resolved Conflict tasks show how the left and right contributor changes
were conflicting, and how you decided to resolve the conflict. You can also navigate to
the involved elements in the workspace model by double-clicking on the tasks.

• Compare Change Task
When comparing models you may notice things of interest that you want to remember. Or
you may want to provide review comments on another developer's changes. If you mark a
change in the change list and press the Add Task button () in the Compare/Merge editor

50

toolbar (or use the context menu), then a Compare Change task is created.

Double-click on the task to navigate to the changed element in the workspace model.

For all Compare/Merge tasks that are linked to a model element, there are some additional
navigation commands available in the context menu. For example, you can navigate to the
element in the Code view, in a diagram or in the Properties view.

Compare/Merge tasks are stored in your workspace metadata. To share them between differ-
ent workspaces (for example between different developers) you can export them into a text
file which then can be imported into another workspace. Use the Import and Export buttons
that are available in the toolbar of the Compare/Merge Tasks view.

Of course, for navigation to work the workspace where you import the Compare/Merge tasks
must contain the model elements that are referenced by the imported tasks. If referenced
model elements are missing you will get an error message when trying to navigate to it:

Logical Models
All but the simplest models are usually stored in multiple files. One important motivation for
using multiple files, as opposed to storing the entire model in one single file, is to facilitate
parallel development of the model. Ideally the model should be split into files in such a way
that when developers work on different features in the model, they should not have to modify

51

the same files. If this is possible, the features can be developed completely in parallel without
the need to merge any model files. Of course, this will not always be possible, since some fea-
tures will inevitably require modifications to the same parts of the model. And in those cases
you do need the ability to merge model files, which is the whole reason why the Merge tool
exists in Model RealTime.

Model RealTime allows a model to be split into model files (.emx) and fragment files (.efx).
Fragment files are used when a containment hierarchy has to be split on multiple files. The
model file then contains the root element in the containment hierarchy, typically a package.
Elements that are contained in the root element, for example classes, can be stored in separate
fragment files. This continues recursively so that elements that are roots of fragment files may
in turn contain other elements that are stored in separate fragment files. A set of files that store
a model element and its (directly or indirectly) contained elements is called a logical model.
The picture below illustrates this concept:

The file "HelloWorld.emx" stores the root package. It also stores some elements that are con-
tained by this package such as the class "Class1" and the capsule "HelloWorld". However, the
class "FragmentClass" is also owned by the "HelloWorld" package but is stored in its own
fragment file "FragmentClass.efx". Looking inside the class "FragmentClass" we see that its
attribute "status" also is stored in "FragmentClass.efx" while the nested class "InnerClass" is
stored as the root of another fragment file "InnerClass.efx". In this example the logical model
consists of the three files "HelloWorld.emx", "FragmentClass.efx" and "InnerClass.efx". In
general, a logical model in Model RealTime consists of exactly one model file (.emx) and
zero to many fragment files (.efx).

The Model RealTime Merge tool understands the concept of a logical model, and can expand
the request to merge a single file, so that the entire logical model to which the file belongs
gets loaded in the merge session. Thereby the Merge tool can merge all files in the logical
model in one single merge session, called a logical model merge session. In the same way a
logical model compare session is a single compare session where multiple files (all belong-
ing to the same logical model) are compared. Below we primarily talk about logical models in
the context of merge, but keep in mind that the logical model concept also applies when com-
paring models.

Logical model merge has some key benefits compared to file-by-file merge. First of all it
leads to fewer merge sessions for a model that is stored in multiple files. For example, con-
sider a model that consists of these six files:
• Model1.emx

52

◦ Fragment1a.efx
◦ Fragment1b.efx

• Model2.emx
◦ Fragment2a.efx
◦ Fragment2b.efx

If all these six files have been modified, it would require six individual file-by-file merge ses-
sions to merge the entire model. With logical model merge only two merge sessions are re-
quired; one for the logical model consisting of the first three files (rooted at Model1.emx), and
another for the logical model consisting of the other three files (rooted at Model2.emx).

Another benefit comes from the fact that logical model merge has a bigger scope for analyz-
ing the changes between the merged models. For example, if you would move an element
from one fragment file to another fragment file within the same logical model, a logical model
merge session will present that change correctly as a Move change, while with file-by-file
merge you would get a Delete change when merging one of the fragment files, and an Add
change when merging the other fragment file.

The most important benefit, however, is that logical model merge is better at protecting the in-
tegrity of a logical model. If you perform refactoring operations which affect the structure of a
logical model (i.e. how the model is structured in model and fragment files) this leads to
changes that can be really tricky to merge correctly using file-by-file merges. With logical
model merge you avoid the risk for model corruption after the merge.

There is a preference General - Compare/Patch - Modeling Compare/Merge - Logical Model
Settings - Disable Logical Model Synchronization which can be set in order to turn off the
support for logical model compare/merge in Model RealTime. However, it is not recom-
mended to set this preference if your model contains logical models that consist of more than
one file. If you do set this preference, you should be careful not to modify the logical model
structure on parallel development streams, since the Merge tool then will not be able to cor-
rectly merge such modifications. You should also avoid refactorings which span across differ-
ent files in the logical model, such as moving an attribute from a class stored in one fragment
file, to a class stored in another fragment file.

53

The preference Enable Sparse Logical Model Merge can be set if you find that your merge
sessions consume too much memory and/or takes too much time to start. As explained in the
note for this preference, a logical model merge implies that four, potentially quite big, models
are loaded into memory during the merge session. With sparse logical model merge enabled
the Merge tool will optimize this to avoid loading those fragment files that have not been
modified. However, although this both speeds up the launch of the merge session, and makes
it consume less memory, it is only recommended to set this preference if this is a concern for
you, due to the side-effects that are mentioned in the note.

Note that not all Model RealTime integrations with CM systems support logical models, and
those that do support them can do so to various degrees. Specific CM integrations can there-
fore have additional or different preferences related to logical model support which control
the behavior in more detail. For example, the EGit integration has specific preferences in the
Team – RSx EGit Integration preference page for enabling logical model merge and for turn-
ing on the “sparse mode” for the merge tool in order to improve performance.

Closures of Models
Above we defined a logical model as a set of files consisting of one model file (.emx) and
zero to many fragment files (.efx). The reason for this definition is that Model RealTime mod-
els often are organized that way, where each logical model constitutes a kind of module which
groups related model elements together into a software unit. Because the model elements in a
logical model are related, most changes will only affect elements within a single logical
model.

However, there will always be some changes that affect more than one model file. For exam-
ple, if you move a class from one package to another (where each package is the root of their

54

own model file) two different logical models are affected by the change. Running a logical
model merge would in this case not be sufficient as it would only look at changes in one of
the logical models. Two separate logical model merge sessions would be required and they
would report two independent changes (a Delete change in one logical model and an Add
change in the other).

To handle this, and similar issues, we need to introduce the concept of model closures. A clo-
sure is defined as a set of logical models that somehow belong together. This phrasing is de-
liberately vague and there are several ways in which the logical models of a closure may be-
long together:
• They may be part of the same workspace
• They may be selected by the same working set within a workspace
• They may be selected manually by the user in the Project Explorer or some other view
• They may be the logical models that were changed as a consequence of making a group

of related changes
• etc.

A closure is defined by a closure manifest. This is a file with the extension .ecx and it just
contains a list of the model files (.emx) that together form the closure. For example, the con-
tents of a closure file containing two models could look like this:

\Project1\ModelA.emx
\Project2\ModelB.emx

If we can obtain the source and target versions of all model files that belong to a closure, then
we can merge changes in those source versions to the target versions. This is what we call a
closure merge. You can think of it as an extension to logical model merge where we in a sin-
gle merge session merge not just one logical model, but a list of logical models.

We can of course also compare changes using model closures, and such a compare session is
called a closure compare.

A closure manifest is not something you create manually, at least not when invoking a com-
pare or merge from the Model RealTime user interface. Rather it will be created automatically
when invoking a closure compare/merge. For a closure merge, all models that have been mod-
ified, and hence may need to be merged, will be part of the closure. For a closure compare,
the closure is usually taken to be all models present in the workspace, or computed from the
selected files or elements.

Closure merge provides the widest possible scope for a merge session. All models that belong
to the closure will be loaded in the merge session. This means that the number of merge ses-
sions that have to be launched is significantly reduced compared to logical model merge (and
even more so compared to file-by-file merge of course). Consider again the example model
mentioned previously:

• Model1.emx
◦ Fragment1a.efx
◦ Fragment1b.efx

• Model2.emx

55

◦ Fragment2a.efx
◦ Fragment2b.efx

If all these six files have been modified, it will require six individual file-by-file merges to
merge the entire model. With logical model merge two merge sessions are required. With clo-
sure merge only one merge session is required (the closure consists of Model1.emx and
Model2.emx).

Fewer merge sessions usually means fewer merge conflicts, which makes it easier and quicker
to perform the merge. The launching of a closure merge session is more time-consuming than
launching a logical model merge session since the contributor and result models will be much
bigger. However, if the total time is measured for all merge sessions that are required for
merging a set of changes, closure merge is usually faster than both logical model merge and
file-by-file merge due to the fewer number of required merge sessions (typically just one with
closure merge).

A closure merge session loads the closure in four versions (left and right contributor, ancestor
and result model). If the closure is big and consists of many models, this may lead to a high
memory consumption for the merge session. If this becomes a concern for you, you may use
the preference Enable Sparse Logical Model Merge mentioned above, which reduces the
number of loaded files in the same way as it does for logical model merge. Specific CM inte-
grations may have additional preferences for optimizing the performance of closure
compare/merge for a particular CM system.

Invoking Logical Model and Closure Compare
Logical model and closure compare is currently only supported for Git (from the EGit integra-
tion user interface and from the command-line). In all other cases when you run a compare
session, you will compare model files individually (i.e. a file-by-file compare).

Invocation from the User Interface (Git)
The EGit integration provides a more fine-grained control over logical models than the gen-
eral on/off preference General - Compare/Patch - Modeling Compare/Merge - Logical Model
Settings - Disable Logical Model Synchronization. With EGit you can either choose for each
compare session what kind of compare to use, or you can configure it to always use a particu-
lar kind of compare. In the preference page Team – RSx EGit Integration you can choose be-
tween the following ways to select the kind of compare:
• Determine compare kind from selected model element or file

In this case the compare kind depends on what you have selected when running a com-
pare command. If you have selected a fragment file (.efx), or a model element stored in a
fragment file, a file-by-file compare session will be launched. If you have selected a
model file (.emx) or a model element stored in a model file, a logical model compare ses-
sion will be launched (for the logical model of that model file).

• Determine compare kind using a dialog
In this case Model RealTime will pop up a dialog when you run a compare command,
asking you what kind of compare session to launch:

56

This is the default behavior, and it allows you to select the kind of compare each time you
run a compare command.

• Use file-by-file compare
Always launch file-by-file compare sessions.

• Use logical model compare
Always launch logical model compare sessions.

• Use closure compare
Always launch closure compare sessions.

Note that this preference is only used when launching a compare session based on a single se-
lected model element or file. If you have selected multiple model elements or files, a closure
compare is always launched. The closure is then a list of logical models to which the selected
elements belong.

The title of the Compare editor tells you what kind of compare that was launched. Here are
some examples:

File-by-file compare session:

Logical model compare session:

Closure compare session:

Invocation from the Command Line (Git)
To launch a logical model or closure compare session from the command-line (or from a
script) you should use the cmcmdline.jar Command Line Tool for Compare/Merge.

The compare session will take place in an instance of Model RealTime that is running on the
machine (or it can be automatically launched first). It is currently not supported to perform a
non-visual logical model or closure compare. Hence the xcompare parameter must be used.
Use the -kind parameter to specify the kind of compare to perform ('logical' or 'closure'), and
use the -source parameter to specify the source version. Note that currently it's only sup-

57

ported to compare the source version with the current contents of the workspace of the Model
RealTime instance that performs the compare operation. Therefore, if you use the -target
parameter it will be ignored.

For example, here is the command to use to perform a logical model compare between the
version tagged by “MYTAG” and the current contents of the workspace in Model RealTime:

java -cp cmcmdline.jar com.ibm.xtools.comparemerge.cmcmdline.CMTool xcom-
pare -kind logical -source MYTAG

When launching a logical model compare session exactly one logical model of the source and
target versions will be compared. If the source or target versions contains multiple logical
models you need to specify which one to compare using the -filter parameter. Otherwise
you will get an error message similar to this:

Multiple logical models found for pattern : HEAD
Please refine your command.

For a closure compare multiple logical models can be compared. In this case you can use the
-filter parameter to specify which logical models that should be part of the closure that is
compared. For example:

java -cp cmcmdline.jar com.ibm.xtools.comparemerge.cmcmdline.CMTool xcom-
pare -kind closure -source HEAD -filter="*Project.emx"

The compared closure will consist of all logical models where the model filename ends with
“Project.emx”.

Invoking Logical Model and Closure Merge
Logical model merge is supported both by the ClearTeam Explorer user interface (for
ClearCase) and the EGit user interface (for Git). It's also supported from the command-line
(for both ClearCase and Git).

Closure merge is supported by the EGit user interface (for Git). It's also supported from the
command-line (for both ClearCase and Git).

Invocation from the User Interface (ClearCase)
It is possible to initiate a merge in many different ways with ClearCase. In most of these you
request a merge of a single file, and then a file-by-file merge session will be launched. This is
true both when you interact with ClearCase directly, using its own user interface or command-
line tools, as well as when you use the ClearTeam Explorer user interface within Model Real-
Time for performing the merge. Here are some examples of such situations which all launch
merge of a single file:
• When merging from the command-line using the command cleartool findmerge.
• When merging using the Version Tree Browser in the ClearCase user interface.
• When merging using the command Merge to View Selected Version in the ClearCase Ver-

sion Tree view provided by the ClearTeam Explorer plugin within Model RealTime.

58

To merge an entire logical model, or several logical models, you must initiate the merge in a
way that does not specify individual file versions, but rather point out a source and target con-
text for the merge. By "context" here we mean a view, a label or a branch - concepts in
ClearCase which groups related versions of multiple files together. Follow these steps to
launch a logical model merge session with ClearTeam Explorer:
1. Ensure that you use a workspace that contains file versions from the target context (a

ClearCase view).
2. Switch to the ClearTeam Explorer perspective.
3. Expand "My Views" in the ClearTeam Navigator and right-click on the target view.

4. Invoke the command ClearCase Merge Search from the context menu which launches a
merge wizard. On the first wizard page just check that the target view you selected is
shown as the destination view. Then proceed by clicking Next.

5. On the next wizard page mark "Select elements to consider for the merge" and choose the
scope of the merge search, for example a particular project folder.

6. On the next wizard page mark "Merge elements selected by a source view" and choose
the source view for the merge (i.e. the view that selects the file versions you want to
merge from).

59

As seen in the dialog it is also possible to select the source files by specifying a branch or
a label instead of a view. However, using a view is recommended as it is less error-prone
and usually more convenient. If you use a branch you must ensure that all files have
versions on that branch, and if you use a label you must ensure that all source file
versions are correctly labelled.
Note that currently ClearTeam Explorer does not support to merge from source file
versions that are checked out. Therefore, ensure that the files that are selected by the
source view are all checked in before you proceed with the merge.

7. Set appropriate merge options at the bottom of this wizard page and then press ”Finish”
to start merging.

All logical models for the files that are selected by the source view will be merged. There will
be one merge session launched in Model RealTime for each logical model to be merged.

Invocation from the User Interface (Git)
Just like for compare, the EGit integration has a preference in the preference page Team – RSx
EGit Integration for choosing between different ways to select the kind of merge:

• Determine merge kind using a dialog
In this case Model RealTime will pop up a dialog when you run a merge command, ask-
ing you what kind of merge session to launch:

60

This is the default behavior, and it allows you to select the kind of merge each time you
run a merge command.

• Use file-by-file merge
Always launch file-by-file merge sessions.

• Use logical model merge
Always launch logical model merge sessions.

• Use closure merge
Always launch closure merge sessions.

There is a similar preference for setting the kind of merge used when launching the Merge
tool. Normally you will want to use the same kind of merge both for the Merge Model and the
Merge Tool commands. If you use logical model merge for Merge Model, then conflicts are
reported per logical model. This means that all files in the logical model will be marked as
conflicting regardless of in which files exactly the conflicts are located. In the same way,
when using closure merge the entire closure will be marked as conflicting.

Invocation from the Command-Line (ClearCase)
To launch a logical model merge session from the command-line (or from a script) you need
to use the ClearCase type manager application. It is called XtoolsTypeManager and is one of
two Compare/Merge command-line tools provided by Model RealTime (see Command Line
Tool for Compare/Merge).

Launch the type manager like this to perform a logical model merge (example for Windows):

XtoolsTypeManager.exe xmerge -logicalmerge -sourcecontext <SOURCECTX> -tar-
getcontext <TARGETCTX> -workspace <TARGETWORKSPACE>

Here <SOURCECTX> should be the name of a ClearCase view that selects the source ver-
sions of the files to be merged. All logical models for these files will be merged, and the ver-
sions of the files selected by the specified view will be used. If you don't want to merge ver-
sions of files selected by a view, you can instead set a label on those file versions that you
would like to merge, and then use the label name as the source context. It is also allowed to
use the name of a ClearCase branch as the source context, and then the latest versions of all
files on that branch will be merged. However, just as is the case when launching logical model
merge from the user interface, it is recommended to use a view as the source context.

61

<TARGETCTX> must be the name of a ClearCase view that selects the target versions of the
files to be merged. Here only a view is allowed, and you cannot use the name of a branch or
label for the target context. The reason is that only a view allows to specify the rules (using
the config spec) needed to know how to create the new versions for the merged files.

Just like when merging from the user interface you should have the files from the target con-
text in your Model RealTime workspace. The path to this workspace is what should be set as
<TARGETWORKSPACE>. If you don't set this parameter a search will take place to find an
appropriate Model RealTime instance which can host the merge session. And if no matching
Model RealTime instance is found a dialog will appear to let you launch a new Model Real-
Time instance. However, searching for and/or launching Model RealTime takes extra time,
and it is therefore recommended to specify the path to the target workspace using the -
workspace parameter.

The initial argument xmerge means that all logical models will be merged visually using the
merge tool in Model RealTime. This is recommended since it allows you to review all merge
result models. If you instead use the argument merge then there will be automatic merges for
all logical models without conflicts, and the merge editor will only appear for those logical
models where conflicts are detected. Only use this if you are certain there are no logical con-
flicts in the merged models.

To perform a closure merge you run XtoolsTypeManager in almost the same way, except that
you set the -closuremerge flag:

<XtoolsTypeManager> merge -closuremerge -sourcecontext <SOURCECTX> -target-
context <TARGETCTX> -workspace <TARGETWORKSPACE>

The -workspace parameter is mandatory when performing a closure merge, and there must
be a running instance of Model RealTime with that workspace loaded.

It is recommended to run closure merge by launching the XtoolsTypeManager from a script.
Such a script can automatically construct a target workspace that contains all model files that
should be merged. It can then launch Model RealTime on that workspace, before finally
launching the closure merge session.

The closure gets automatically generated based on the target workspace that is specified. The
name of the generated closure manifest file (.ecx) shows up in the title of the merge editor in
Model RealTime:

62

If you look at changes or conflicts in one of the Explorer tree viewers you will see that it con-
tains each model of the closure as a root:

There are also a few other parameters that are supported by XtoolsTypeManager. Type

XtoolsTypeManager.exe merge --usage

to print detailed information about all parameters that are supported. For example, there is a
parameter -unattended which can be used for situations when no user is available to handle
merge conflicts (for example when the command is run from a nightly scheduled script). This
parameter forces a non-visual merge for all logical models, and if there are conflicts these are
written to a log file (specified by means of a -logfile parameter) which can be examined
manually at a later point in time.

Invocation from the Command-Line (Git)
To launch a logical model or closure merge session from the command-line (or from a script)
you should use the cmcmdline.jar Command Line Tool for Compare/Merge.

The merge session will take place in an instance of Model RealTime that is running on the
machine (or it can be automatically launched first). Use the -kind parameter to specify the

63

kind of merge to perform (“logical” or “closure”). If conflicts are found files will be marked
as conflicting according to the selected kind of merge. For example, for logical model merge
all files in a logical model will be marked as conflicting if at least one conflict is found for the
logical model. The -source and -target parameters should specify the source and target ver-
sions for the merge. The latter parameter is optional and defaults to the current contents of the
workspace of the Model RealTime instance that performs the merge operation.

As an example, here is the command for performing a logical model merge from the “fea-
ture3” branch to the “master” branch:

java -cp cmcmdline.jar com.ibm.xtools.comparemerge.cmcmdline.CMTool merge
-kind logical -source feature3 -target master

If you instead use the xmerge parameter the Merge tool will be launched immediately after
the merge has finished, if conflicts were found.

Here is an example of launching a closure merge from the version selected by the tag “pre-
master” to the “feature3” branch.

java -cp cmcmdline.jar com.ibm.xtools.comparemerge.cmcmdline.CMTool xmerge
 -kind closure -source pre-master -target feature3

The closure is by default all logical models that have changes when comparing the source and
target versions. You can define the closure more specifically using a closure manifest file
(.ecx) and the -manifest parameter.

Compare/Merge Server
As we have seen above, it is possible to launch the Compare/Merge tool from outside of
Model RealTime, for example from command line tools such as "cleartool". How does such
command line tools find the right Model RealTime instance to use for the compare/merge ses-
sion? The answer is that each running Model RealTime instance has a Compare/Merge server
(sometimes also known as a Team Server) which listens on a specific port for incoming re-
quests to perform a compare or merge operation. If you open preferences at General - Com-
pare/Patch - Modeling Compare/Merge - Compare/Merge Server you can configure the Com-
pare/Merge server. The first set of preferences control the range of ports to use for
Compare/Merge servers:

64

By default ports in the range 60001 to 60020 are used. This means that at most 20 instances of
Model RealTime can run at the same time on the machine. If you launch more than that, the
additional Model RealTime instances will not get a Compare/Merge server and can hence not
host compare/merge sessions that are initiated from outside of Model RealTime. You can
change the port range using the preference Alternative Port Range. You need to do this if the
default port range is not available on your machine, or if you want to support more than 20
Model RealTime instances running at the same time.

When a command-line tool (or some other tool external to Model RealTime) wants to launch
a compare/merge session it will iterate over the Compare/Merge Server port range to find out
which instances of Model RealTime that are running on the machine. If there are no Model
RealTime instances running, a new Model RealTime instance has to be launched and the com-
pare/merge session will be sent to it. Different command-line tools have different strategies
for how to find an appropriate running Model RealTime instance, or (in case such an instance
does not exist) perform an automatic launch of Model RealTime. There are in principle two
strategies:
• Let the user of the command-line tool specify how to select which running Model Real-

Time instance to use, or how Model RealTime should be launched. The cmcmdline.jar
tool (see Command Line Tool for Compare/Merge) uses this approach.

• Ask the user at run-time for this information. The XtoolsTypeManager tool (see Com-
mand Line Tool for Compare/Merge) uses this approach.

The XtoolsTypeManager will open a dialog to let you choose which of the running Model Re-
alTime instances to use for the compare/merge session. It also let's you choose to launch a
new Model RealTime instance. The Model RealTime instances are identified in the dialog by
the location where they are installed as well as the workspace they are currently using. To
make it easier to pick the right Model RealTime instance you can modify your eclipse.ini
file to launch Model RealTime using the option -showlocation. Thereby the workspace path
will be shown in the window title of Model RealTime. You can also set the preference Gen-
eral - Workspace - Workspace name to provide a description of the workspace which also will
be shown in the Model RealTime window title. For example, when using ClearCase it may be
useful to give the workspace the same name as the ClearCase view that is used by files con-
tained in that workspace. These measures make it easy to pick the right Model RealTime in-
stance for the compare/merge session.

If you always want to use the same Model RealTime instance for your compare/merge ses-
sions (or always want to launch a new instance), then you can make your choice in the dialog
and then mark the checkbox Reuse the same instance for future merges without prompting.
This setting is stored in a textfile .PreferredRSAInstanceForMerge that is located in the
user home directory. To later make the dialog appear again you can simply delete this file.

When the XtoolsTypeManager application launches a new Model RealTime instance, the
launch is done by using the second set of preferences in the Compare/Merge Server prefer-
ence page which specifies the installation path, the workspace to use etc.

65

These settings together form something called an Eclipse Auto Launch Configuration and
at each point in time exactly one such launch configuration is active. You can set the active
launch configuration by pressing the “Set” button. The settings are stored in the file
EclipseAutoLaunchCommand.cfg which is located in the user's home directory under App-
Data/Roaming/Rational/TeamServerSharedData (on Windows) and rational/Team-
ServerSharedData/linux_x86 (on Linux).

The first time you launch an Model RealTime instance that either uses a new installation loca-
tion or a new workspace, a dialog will appear to ask you whether the Eclipse Auto Launch
Configuration should be set to the newly launched instance:

If you press the "Use New" button, the Eclipse Auto Launch Configuration will be updated to
the new values shown in the dialog, while if you press "Use Existing" the previous settings
will still apply.

Command Line Tool for Compare/Merge
Model RealTime provides two command-line tools for launching compare and merge sessions
from the command-line or scripts:

66

1. XtoolsTypeManager
This is an executable on Windows, and a shell-script on Linux. It’s located in the plugin
folder for the com.ibm.xtools.comparemerge.team plugin. For example (the part in bold-
face depends on the installed version of Model RealTime):
<install-dir>\plugins\
com.ibm.xtools.comparemerge.team_7.60.100.v20150603_0908\utm

One way to find out the exact path to XtoolsTypeManager, which for example a script can use, is to look in
the file TypeManagerLaunchCommand.cfg which is located in the user's home directory under
AppData/Roaming/Rational/TeamServerSharedData (on Windows) and rational/
TeamServerSharedData/linux_x86 (on Linux). The path to XtoolsTypeManager is specified in
this file.

2. cmcmdline.jar
This is a Java application. It’s located in the same place as the XtoolsTypeManager.

The XtoolsTypeManager is specifically designed for integration with ClearCase. It is possible
to also use it as a general command-line tool for Compare/Merge, but for that we instead rec-
ommend the cmcmdline.jar Java application which is more generic, newer and more feature-
rich.

This rest of this chapter describes the recommended and general command-line tool cmcmd-
line.jar.

Launch the command-line tool using Java like this:

java -cp cmcmdline.jar com.ibm.xtools.comparemerge.cmcmdline.CMTool <com-
mand> <options>

You should use the same Java virtual machine that you use for running Model RealTime (nor-
mally specified in eclipse.ini using the -vm argument).

<command> is one of the following:
• compare

Perform a non-visual compare operation, i.e. a compare operation that does not launch the
Model RealTime Compare user interface. The number of conflicts and changes are re-
ported. Non-visual compare is only supported for three-way compare, so you must spec-
ify an ancestor version using the -ancestor option (see below).

• merge
Perform a non-visual merge operation, i.e. a merge operation that does not launch the
Model RealTime Merge user interface.

• xcompare
Perform a visual compare operation. A connection is established to an Model RealTime
instance using the Compare/Merge Server and a compare session is launched in that
Model RealTime instance.

67

Hint: The full path to cmcmdline.jar can be seen in the preferences at General –
Compare/Patch – Modeling Compare/Merge – Compare/Merge Server.

• xmerge
Perform a visual merge operation. A connection is established to an Model RealTime in-
stance using the Compare/Merge Server and a merge session is launched in that Model
RealTime instance (provided that conflicts were found so that the merge could not be
fully automatic).

You must also specify <options> according to which command that is used. The following
options are available (use the -help option to list all available options):

• -ancestor <file>
Specifies the ancestor version of a model file to use in a three-way compare or merge ses-
sion. For a file-by-file compare you can omit specifying an ancestor version, and then the
compare session will be two-way.

• -autoLaunch <argument>
If this option is used the Compare/Merge command-line tool will not look for a running
instance of Model RealTime. Instead it will launch a new Model RealTime instance and
use it for the compare/merge session. The argument to this option should be the launch
command to use for launching the new Model RealTime instance. Note that since this
command typically contains its own arguments, you need to enclose it in double quotes to
make sure it's processed correctly. For example:

-autoLaunch "C:\rsarte\eclipse\eclipse.exe -nosplash -data C:\rsarte\
egit_workspace -showlocation"

-autoLaunchFile <file path>
This option works the same as -autoLaunch but the launch command is read from a text
file instead. For example, you can pass the path to the EclipseAutoLaunchCommand.cfg
file in order to launch Model RealTime according to what is currently specified as the
auto-launch configuration (see Compare/Merge Server for more information about the
auto-launch configuration).

• -ccpath
Set this option if you use any ClearCase specific paths.

• -cformat [details | conflicts | simple]
Specifies how to report the result of a non-visual compare session. The default format is
'details' which means that full details about conflicts and changes are reported. For exam-
ple:

Non-Visual Compare completed with result : SUCCESS.DIFF
conflicts : 0
left diffs : 0
right diffs : 1

Set the format to 'conflicts' to only show information about conflicts (second line in the
example above), and to 'simple' to only show if the compare session was successfully per-
formed and if any differences were found or not (first line in the example above).

• -cwd <path>
Specifies the current working directory. Relative paths are by default interpreted as rela-
tive from the current working directory of the Java application. If they should be inter-
preted relative to another directory, use this option.

68

• -exportSettings <file>
This option specifies a file to which all used option arguments are written. This also
shows the default value of some options which are not explicitly set. This can be useful
for throubleshooting if you get unexpected results from a compare or merge operation.

• -fileExtension <argument>
As described in Switch Compare Viewer it is the file extension of the contributor files
that determines which content type to use for the compare/merge session. The following
file extensions are currently recognized:
◦ emx, efx

UML model and fragment files
◦ epx

UML profiles (these are recognized but currently not supported in compare/merge)
◦ bpx

BPMN model files
◦ topologyy, topologyv

Topology model and diagram files

If your contributor files do not have these expected file extensions you need to use this
option to specify which content type to use when comparing or merging these files.

• -filter <argument>
Specifies a filter for a logical model or closure compare session. The filter can specify a
list of model files, and only those files will then be part of the logical or closure compare
session. The format of the argument is either a comma-separated list of file patterns, or
@<pattern file> where <pattern file> is a file that contains such a list of file pat-
terns. Note that the patterns are matched against the file names of .emx files. It may in-
clude the wildcard symbols * and ?.

• -help
Show the list of all available options, how they can be abbreviated, and a brief description
of each.

• -kind [file | logical | closure]
Specifies the kind of compare/merge session. The default is 'file' which means that the
scope of the compare/merge session is a single file. This kind is sometimes called “file-
by-file” since files are compared or merged individually, one by one. Set the option to
'logical' or 'closure' to perform a logical or closure compare/merge.

• -lancestor <label>
-lleft <label>
-lright <label>
These options can be used to set a label for the left, right or ancestor version in a visual
compare or merge session. The default labels that are used depend on the input for the
compare or merge session. It can for example be a filename, or the description of a Git
commit. By specifying custom labels it may be easier to understand what the contributors
mean in a particular compare/merge scenario.

• -left <file>
Specifies the left version of a model file to use in the compare/merge session.

• -right <file>
Specifies the right version of a model file to use in the compare/merge session.

69

• -log <file>
Redirects all log messages produced by the Compare/Merge command-line tool to a text
file.

• -manifest <file>
Specifies a closure manifest file (.ecx) which defines the closure for a closure merge ses-
sion. If you do not specify a closure manifest the closure will by default consist of all log-
ical models that have changes when comparing the source and target versions for the
merge. The syntax of a closure manifest file is

[closure <closure-name>]
<path to model file>
<path to model file>
...

where <closure-name> is the name of the closure, and <path to model file> is a
workspace relative path to the .emx file of a logical model.

• -out <file>
Specifies the output file for a merge session. This file is sometimes called the merge re-
sult file since this is where the result of the merge is saved. This option is only used for
file-by-file merges. For logical and closure merge a target workspace is used instead (see
the option -workspace).

• -portRange <fromPort>:<toPort>
Specifies the range of ports to use when communicating with the Compare/Merge Server
of running Model RealTime instances. The default value is 60001:60020. You may spec-
ify a different port range if you have set the Alternative Port Range preference to some-
thing else.

• -settings <file>
Specifies that options should be read from a text file. Each option in the file should be
specified on its own line using the syntax

<option>=<value>

The file may contain comments by using '#' as the first character of a line.
• -shutdown

If this option is set Model RealTime will be shutdown automatically when the launched
compare/merge session is finished. However, this only happens if Model RealTime was
also automatically launched in order to perform the compare/merge operation. If an exist-
ing Model RealTime instance is used you need to specify
-shutdown=force
to force that Model RealTime instance to shutdown when the compare/merge session is
finished.

• -source <argument>
This option needs to be set when launching a logical model or closure compare/merge
session. The argument specifies the source version of the model to be compared or
merged. The interpretation of the argument depends on the CM system that is used. For
Git it can be one of the following:
◦ The name of a branch
◦ The name of a tag (including “HEAD”)
◦ A commit id

70

• -target <argument>
This option may be set when launching a logical model or closure merge session. The ar-
gument specifies the target version of the model to be merged. If this option is omitted the
target version is taken to be the current workspace version of the Model RealTime in-
stance where the merge session takes place. The interpretation of the argument depends
on the CM system that is used. See the -source option above for valid target arguments
when using Git.
Note that for logical model or closure compare, the target version is always the current
contents of the workspace in the Model RealTime instance that performs the compare op-
eration. Hence the -target option is ignored in this case.

• -threadCount <number of threads>
The Compare/Merge command-line tool uses threads to be able to find an available in-
stance of Model RealTime faster when launching a compare/merge session. By default 10
threads are used. If you have many instances of Model RealTime running and you experi-
ence delays when launching a compare/merge session you can increase the number of
threads used.

• -verbose <argument>
This option turns on additional logging messages. It can be helpful when troubleshooting
problems that seem related to how the Compare/Merge command-line tool runs. The ar-
gument should be a comma-separated list of strings that specify which modules of the
command-line tool that should emit additional logging. Each string starts with '+' or '-' for
enabling or disabling logging for a particular module. The following modules can be
specified:
◦ PROXY (disabled by default)

Show details about communication with the Model RealTime Compare/Merge Server
(also known as the Team Server).

◦ WSCHECK (enabled by default)
Show details about how the workspace pattern specified by the -workspace option is
matched against workspace folders of running Model RealTime instances.

◦ CONNECT (enabled by default)
Show details about how the connection to the Model RealTime Team Server is estab-
lished.

◦ EXCEPTION (disabled by default)
Show stack traces for Java exceptions that are thrown internally.

◦ PATH (enabled by default)
Show details about how paths are converted.

◦ SYSPROP (disabled by default)
Show details about how system properties are processed.

◦ SHUTDOWN (disabled by default)
Show details about the shutdown of an Model RealTime instance.

◦ RPLYSOCK (disabled by default)
Show details about the connection to an auto-launched Model RealTime instance.

◦ AUTO (disabled by default)
Show details about how an Model RealTime instance gets automatically launched.

◦ PROGRESS (enabled by default)
Show the progress of auto-launching Model RealTime in the console.

◦ PROGRESSSERVER (disabled by default)
Show progress messages in the console when using logical and closure merge.

71

◦ ALL
Enables logging for all modules mentioned above.

For example, to enable all available logging:

-verbose=+ALL

You can turn off all logging by specifying:

-verbose=silent

• -waitForLaunch <seconds to wait>
This option can be used when auto-launching an Model RealTime instance to use for a
compare/merge session. By default the Compare/Merge command-line tool waits for at
most 3 minutes for the Model RealTime instance to start up. If it has not been able to de-
tect that it is running within that time limit it terminates. If it takes longer to launch the
Model RealTime instance in your environment, you may raise this limit. The option argu-
ment is the number of seconds to wait.

• -workspace <pattern>
By default the Compare/Merge command-line tool attempts to connect to the first Model
RealTime instance it finds running. You may use this option to specify a pattern for the
workspace folder of the Model RealTime instance that should be used for the compare/
merge session. The pattern may contain wildcards ('*' and '?'). For example:

-workspace=/home/*/myworkspace

Command-Line Integrations with CM Tools
Many CM systems can be used from the command-line. It's then convenient to have an inte-
gration with Model RealTime Compare/Merge so that compare and merge operations per-
formed with the CM tool will launch the Model RealTime Compare/Merge tool for model
files. Such integrations use the Model RealTime Compare/Merge command-line tool.

ClearCase comes with a pre-configured integration which uses the XtoolsTypeManager.
That's why a command like

cleartool diff

on model files will launch an Model RealTime compare session and not the standard diff tool.

For other CM systems, such as Git, you need to configure the integration yourself. In general
what is usually needed is to write a wrapper script which takes arguments from the CM sys-
tem and uses some of them in order to invoke the cmcmdline.jar Java application with appro-
priate arguments. Note that the XtoolsTypeManager should not be used in this case, since it is
specifically designed for the ClearCase integration. Refer to the CM system's documentation
for the exact steps to set-up such an integration.

72

	Comparing and Merging Models with
	DevOps Model RealTime
	Introduction
	Comparing Models
	Compare from Local History
	Compare from File System
	Compare from CM System
	ClearCase
	Git

	Compare User Interface
	Switch Compare Viewer
	Reorganize Contributors
	Browse Button
	Preferences Menu
	Add Task
	Save List of Changes
	Sub Compare Button
	Next/Previous Buttons
	Delta Tree Configuration
	Change List Compartment
	Contributor Model Compartments

	Sub Compare

	Merging Models
	Merge from File System
	Merge from CM System
	ClearCase
	Git

	Merge User Interface
	Add Task
	Accept All Non-Conflicting Changes
	Enable Auto-Advance
	Accept
	Reject
	Accept All Changes from Left
	Accept All Changes from Right
	Next/First Unresolved Buttons
	Undo/Redo Buttons
	Commit Merge Session
	Cancel Merge Session
	Save a Copy

	Resolving Conflicts
	Dependent Changes

	Text Merge
	Merging Rich-Text Comments

	Structural Merging by Combining Models
	Manual Mappings

	Exploring the Contributor Models
	Types of Changes
	Add Change
	Delete Change
	Modify Change
	Move Change
	Fragment Absorb Change
	Fragment Separation Change
	Diagram View Position and Size Change
	Compare/Merge Induced Reference Modifications
	Compare/Merge Induced Deletions

	Compare/Merge Tasks
	Logical Models
	Closures of Models
	Invoking Logical Model and Closure Compare
	Invocation from the User Interface (Git)
	Invocation from the Command Line (Git)

	Invoking Logical Model and Closure Merge
	Invocation from the User Interface (ClearCase)
	Invocation from the User Interface (Git)
	Invocation from the Command-Line (ClearCase)
	Invocation from the Command-Line (Git)

	Compare/Merge Server
	Command Line Tool for Compare/Merge
	Command-Line Integrations with CM Tools

